1
|
Liuzzo G, Patrono C. Weekly Journal Scan: apolipoprotein A1 is not an adequate shield against early vascular events after acute myocardial infarction. Eur Heart J 2024; 45:4153-4155. [PMID: 39056421 DOI: 10.1093/eurheartj/ehae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Affiliation(s)
- Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Carlo Patrono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
- Center of Excellence on Ageing, CAST, 'G. d'Annunzio' University School of Medicine, Chieti, Italy
| |
Collapse
|
2
|
Díez-Ricote L, Cuadrado-Soto E, Pastor-Fernández A, de la Peña G, Martinez-Botas J, Castañer O, Martínez-González MA, Salas-Salvado J, Fernández-Marcos PJ, Gómez-Coronado D, Ordovas J, Daimiel L. Effect of a Multifactorial Weight Loss Intervention on HDL Cholesterol Efflux Capacity and Immunosenescence: A Randomized Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-14. [PMID: 39384179 DOI: 10.1080/27697061.2024.2407942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE Life expectancy and obesity prevalence are increasing worldwide, leading to an increase in the prevalence of cardiovascular disease. High-density lipoprotein (HDL) functionality and immunosenescence play key roles in cardiovascular disease, longevity, and quality of aging. Both molecular hallmarks of aging are impacted by obesity and metabolic syndrome and can be modulated by lifestyle. We aimed to evaluate the effect of a lifestyle intervention focused on an energy-reduced Mediterranean diet (erMedDiet), physical activity (PA), and behavioral support on HDL cholesterol efflux capacity (CEC) and immunosenescence. METHOD CEC and immunosenescent T cells were determined in 60 participants from the control group (CG) and 56 from the intervention group (IG) of the PREDIMED-Plus trial at baseline and after 1 and 3 years of follow-up. PREDIMED-Plus is a randomized, controlled, parallel-group trial with an IG of erMedDiet, PA promotion, and behavioral support for weight loss and a CG of usual primary care advice. The sample included 116 volunteers from the PREDIMED-Plus-IMDEA subsample of the PREDIMED-Plus trial. Men aged 55 to 75 years and women aged 60 to 75 years with a body mass index between 27 and 40 kg/m2 and metabolic syndrome were included. RESULTS Participants within the IG had significantly improved CEC (2.42% and 10.69% after 1 and 3 years of follow-up) and a decreased in senescent T cell profile (-3.32% ± 12.54% and -6.74% ± 11.2%, p < 0.001, after 1 and 3 years of follow-up). Baseline obesity status impacted the response to the intervention. CONCLUSIONS A weight loss intervention program with erMedDiet and PA ameliorated senescence markers.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Esther Cuadrado-Soto
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Javier Martinez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Olga Castañer
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - M A Martínez-González
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Jordi Salas-Salvado
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
| | - Pablo J Fernández-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Jose Ordovas
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
3
|
Pagonas N, Mueller R, Weiland L, Jaensch M, Dammermann W, Seibert FS, Hillmeister P, Buschmann I, Christ M, Ritter O, Westhoff TH, Sasko B, Kelesidis T. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm 2024; 21:362-369. [PMID: 38040404 PMCID: PMC11073573 DOI: 10.1016/j.hrthm.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia and considered to be a progressive chronic disease associated with increased morbidity and mortality. Recent data suggest a link between inflammation, oxidative stress, and AF, although the underlying mechanisms are not fully understood. Because oxidized lipoproteins cause structural damage and electrophysiologic changes in cardiomyocytes, it is feasible that the transformation of atheroprotective high-density lipoprotein (HDL) into dysfunctional HDL contributes to the development of AF. OBJECTIVE The purpose of this study was to determine whether a reduced antioxidant function of HDL is associated with the presence of AF. METHODS In this multicenter cross-sectional cohort study, we assessed HDL function in sera of 1206 participants. Patients were divided into groups according to the presence of AF (n = 233) or no AF (n = 973). A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function as assessed by increased normalized HDL lipid peroxide content (nHDLox). RESULTS Participants with AF had a 9% higher mean relative nHDLox compared to persons without AF (P = .025). nHDLox was strongly associated with AF in all models of logistic regression, including the analysis adjusted for age, sex, and risk factors for AF (all P ≤.01). CONCLUSION Reduced antioxidant HDL function is associated with the presence of AF, which supports growing evidence that impaired lipoprotein function is linked to electrophysiological changes in cardiomyocytes. nHDLox is one of several contributors to the initiation and perpetuation of AF.
Collapse
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| | - Rhea Mueller
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Linda Weiland
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
| | - Monique Jaensch
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Center for Internal Medicine II, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Felix S Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Philipp Hillmeister
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Ivo Buschmann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin Christ
- Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University Duisburg-Essen, Bottrop, Germany
| | - Oliver Ritter
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Benjamin Sasko
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany; Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Uehara Y, Komatsu T, Sasaki K, Abe S, Nakashima S, Yamamoto T, Kim JE, Cho KH. Cuban policosanol improves high-density lipoprotein cholesterol efflux capacity in healthy Japanese subjects. Front Nutr 2024; 10:1297008. [PMID: 38260075 PMCID: PMC10800607 DOI: 10.3389/fnut.2023.1297008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Policosanol supplementation has been reported to increase high-density lipoprotein (HDL)-cholesterol (HDL-C). However, the association between Cuban policosanol supplementation and HDL cholesterol efflux capacity (CEC), an important function of HDL, remains unclear. We performed a lipoprotein analysis investigating 32 Japanese healthy participants (placebo, n = 17 or policosanol supplementation for 12 weeks, n = 15) from a randomized Cuban policosanol clinical trial. First, HDL CEC and HDL-related factors were measured before and after policosanol supplementation. Then, through electron microscopy after ultracentrifugation and high-performance liquid chromatography, HDL morphology and subclass were analyzed, respectively. Finally, the effects of policosanol supplementation regarding HDL function, HDL-related factors, and HDL morphology/component were examined. Cuban policosanol considerably increased the HDL CEC and HDL-C and apolipoprotein A-I (ApoA-I) levels. Furthermore, policosanol supplementation led to larger HDL particles, increased cholesterol content in larger HDL particles, and reduced triglyceride content in smaller HDL particles. In participants with high baseline HDL-C levels, the policosanol effects for HDL CEC are observed. HDL CEC fluctuation induced by policosanol was highly associated with HDL-C and ApoA-I changes. In conclusion, for the first time, we demonstrated that policosanol supplementation increased the HDL CEC in healthy participants.
Collapse
Affiliation(s)
- Yoshinari Uehara
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Research Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Tomohiro Komatsu
- Research Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kei Sasaki
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Satomi Abe
- Research Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Taiki Yamamoto
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu, Republic of Korea
| | - Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu, Republic of Korea
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Ni Q, Yu Z, Zhang P, Jia H, Liu F, Chang H. High-density lipoprotein cholesterol level as an independent protective factor against aggravation of acute pancreatitis: a case-control study. Front Endocrinol (Lausanne) 2023; 14:1077267. [PMID: 38125797 PMCID: PMC10731035 DOI: 10.3389/fendo.2023.1077267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/09/2023] [Indexed: 12/23/2023] Open
Abstract
Background and aims At present, evidence on the association between high-density lipoprotein cholesterol (HDL-C) levels and aggravation of acute pancreatitis (AP) is limited. This study aimed to investigate the relationship between the lowest HDL-C level during intensive care units (ICU) stay and AP aggravation and to determine the optimum cutoff lowest HDL-C level. Methods Patients admitted to the ICU of the Shandong Provincial Hospital for AP from 2015 to 2021 were included. The lowest HDL-C level during ICU stay was set as the independent variable, and the progression or non-progression to severe AP (SAP) was set as the dependent variable. Univariate and multivariate analyses were performed to determine the relationship between the two variables, and receiver operating characteristic (ROC) curves were plotted to analyze the predictive ability of the lowest HDL-C level for progression to SAP. Results This study included 115 patients. The difference in the lowest HDL-C level between the SAP and moderately SAP groups was significant (P < 0.05). After adjusting for covariates, the lowest HDL-C level showed a negative correlation with the occurrence of SAP, with a relative risk of 0.897 (95% confidence interval: 0.827-0.973). The area under the ROC curve for prediction of AP aggravation by the lowest HDL-C level was 0.707, and the optimum cutoff lowest HDL-C level was 0.545 mmol/L. Conclusion No less than 0.545 mmol/L of the HDL-C level during ICU stay may be an independent protective factor for the aggravation of AP.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zetao Yu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Zhang
- Intensive Care Unit (ICU), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongtao Jia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fangfeng Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Dziedzic EA, Gąsior JS, Tuzimek A, Dąbrowski M, Kochman W. Correlation between Serum 25-Hydroxyvitamin D Concentration, Monocyte-to-HDL Ratio and Acute Coronary Syndrome in Men with Chronic Coronary Syndrome-An Observational Study. Nutrients 2023; 15:4487. [PMID: 37892562 PMCID: PMC10609971 DOI: 10.3390/nu15204487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in European men. Atherosclerosis and its clinical consequence, chronic coronary syndrome (CCS), comprise two main elements: dysfunction of lipoprotein metabolism and an important inflammatory component that contributes to the development of complications, including acute coronary syndrome (ACS). Measures of both components are combined in a composite marker called monocyte-to-HDL ratio (MHR). Vitamin D was previously described to influence inflammation processes, and its deficiency influences CVD risk factors. This research describes the differences in MHR and total serum 25-hydroxyvitamin D (25(OH)D) concentration between male patients with different diagnoses of CCS and the correlation between 25(OH)D and MHR in this group. Significant differences were observed between ACS and CCS patients in 25(OH)D and MHR-the highest HDL and serum 25(OH)D concentrations were observed in patients with CCS, whereas the highest value of MHR was observed in patients with STEMI. A significant correlation was observed between 25(OH)D, HDL, and MHR. Due to the significant but small nominal difference in MHR values between groups of patients diagnosed with ACS and CCS, and the possible influence of age and hyperlipidemia status on the differences in vitamin D levels in these groups, this subject requires further well-designed research. The suggested bidirectional relationship between MHR and 25(OH)D and the role of MHR as a predictor of vitamin D status in the body also needs to be verified.
Collapse
Affiliation(s)
- Ewelina A. Dziedzic
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Tuzimek
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Marek Dąbrowski
- Department of Cardiology, Bielanski Hospital, 01-809 Warsaw, Poland
| | - Wacław Kochman
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
7
|
McCullough D, Harrison T, Enright KJ, Amirabdollahian F, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial. Nutrients 2023; 15:3002. [PMID: 37447328 DOI: 10.3390/nu15133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Low-carbohydrate high-fat (LCHF) diets can be just as effective as high-carbohydrate, lower-fat (HCLF) diets for improving cardiovascular disease risk markers. Few studies have compared the effects of the UK HCLF dietary guidelines with an LCHF diet on lipids and lipoprotein metabolism using high-throughput NMR spectroscopy. This study aimed to explore the effect of an ad libitum 8-week LCHF diet compared to an HCLF diet on lipids and lipoprotein metabolism and CVD risk factors. For 8 weeks, n = 16 adults were randomly assigned to follow either an LCHF (n = 8, <50 g CHO p/day) or an HCLF diet (n = 8). Fasted blood samples at weeks 0, 4, and 8 were collected and analysed for lipids, lipoprotein subclasses, and energy-related metabolism markers via NMR spectroscopy. The LCHF diet increased (p < 0.05) very small VLDL, IDL, and large HDL cholesterol levels, whereas the HCLF diet increased (p < 0.05) IDL and large LDL cholesterol levels. Following the LCHF diet alone, triglycerides in VLDL and HDL lipoproteins significantly (p < 0.05) decreased, and HDL phospholipids significantly (p < 0.05) increased. Furthermore, the LCHF diet significantly (p < 0.05) increased the large and small HDL particle concentrations compared to the HCLF diet. In conclusion, the LCHF diet may reduce CVD risk factors by reducing triglyceride-rich lipoproteins and improving HDL functionality.
Collapse
Affiliation(s)
- D McCullough
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - T Harrison
- Department of Clinical Sciences and Nutrition, University of Chester, Chester CH1 4BJ, UK
| | - K J Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - F Amirabdollahian
- School of Health and Society, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - M Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX1 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', King's College London, London SE1 7EH, UK
| | - K E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - C E Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - I G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
8
|
Ispoglou T, Wilson O, McCullough D, Aldrich L, Ferentinos P, Lyall G, Stavropoulos-Kalinoglou A, Duckworth L, Brown MA, Sutton L, Potts AJ, Archbold V, Hargreaves J, McKenna J. A Narrative Review of Non-Pharmacological Strategies for Managing Sarcopenia in Older Adults with Cardiovascular and Metabolic Diseases. BIOLOGY 2023; 12:892. [PMID: 37508325 PMCID: PMC10376679 DOI: 10.3390/biology12070892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
This narrative review examines the mechanisms underlying the development of cardiovascular disease (CVD) and metabolic diseases (MDs), along with their association with sarcopenia. Furthermore, non-pharmacological interventions to address sarcopenia in patients with these conditions are suggested. The significance of combined training in managing metabolic disease and secondary sarcopenia in type II diabetes mellitus is emphasized. Additionally, the potential benefits of resistance and aerobic training are explored. This review emphasises the role of nutrition in addressing sarcopenia in patients with CVD or MDs, focusing on strategies such as optimising protein intake, promoting plant-based protein sources, incorporating antioxidant-rich foods and omega-3 fatty acids and ensuring sufficient vitamin D levels. Moreover, the potential benefits of targeting gut microbiota through probiotics and prebiotic fibres in sarcopenic individuals are considered. Multidisciplinary approaches that integrate behavioural science are explored to enhance the uptake and sustainability of behaviour-based sarcopenia interventions. Future research should prioritise high-quality randomized controlled trials to refine exercise and nutritional interventions and investigate the incorporation of behavioural science into routine practices. Ultimately, a comprehensive and multifaceted approach is essential to improve health outcomes, well-being and quality of life in older adults with sarcopenia and coexisting cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Gemma Lyall
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Lauren Duckworth
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Meghan A Brown
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Alexandra J Potts
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Victoria Archbold
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jackie Hargreaves
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| |
Collapse
|
9
|
Rungraung N, Muangpracha N, Trachootham D. Twelve-Week Safety and Potential Lipid Control Efficacy of Coffee Cherry Pulp Juice Concentrate in Healthy Volunteers. Nutrients 2023; 15:nu15071602. [PMID: 37049443 PMCID: PMC10097379 DOI: 10.3390/nu15071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Coffee cherry pulp, a major waste product from coffee manufacturing, contains polyphenols with antioxidant activity. However, its clinical safety and health benefits are unclear. This randomized, double-blinded, placebo-controlled trial evaluated the safety and potential efficacy of coffee cherry pulp juice concentrate. A total of 61 participants were randomly divided into a study group (n = 30), receiving the juice, and a control group (n = 31), receiving a placebo drink of 14 g twice daily for 12 weeks. Adverse symptoms, changes in body weight, hematological and biochemical parameters, vital signs, and heart function were evaluated using subject diaries, interviews, blood and urine tests, and electrocardiograms. The results showed no intervention-related adverse events. Body weight, liver, renal function, complete blood counts, blood glucose, urinalysis, and electrocardiograms were not significantly altered throughout the study. Consuming the juice for at least 8 weeks significantly decreased cholesterol and LDL levels. The glucose levels were maintained significantly better than those of the placebo group. The findings suggest that continuously consuming 28 g/day of coffee pulp juice concentrate for 12 weeks is safe in healthy volunteers. Future studies could employ a dose of ≤28 g/day to investigate the efficacy of this novel food, especially for preventing dyslipidemia and diabetes.
Collapse
|
10
|
HDL Function and Size in Patients with On-Target LDL Plasma Levels and a First-Onset ACS. Int J Mol Sci 2023; 24:ijms24065391. [PMID: 36982465 PMCID: PMC10048810 DOI: 10.3390/ijms24065391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Patients admitted for acute coronary syndrome (ACS) usually have high cardiovascular risk scores with low levels of high-density lipoprotein cholesterol (HDL-C) and high low-density lipoprotein cholesterol (LDL-C) levels. Here, we investigated the role of lipoprotein functionality as well as particle number and size in patients with a first-onset ACS with on-target LDL-C levels. Ninety-seven patients with chest pain and first-onset ACS with LDL-C levels of 100 ± 4 mg/dL and non-HDL-C levels of 128 ± 4.0 mg/dL were included in the study. Patients were categorized as ACS and non-ACS after all diagnostic tests were performed (electrocardiogram, echocardiogram, troponin levels and angiography) on admission. HDL-C and LDL-C functionality and particle number/size by nuclear magnetic resonance (NMR) were blindly investigated. A group of matched healthy volunteers (n = 31) was included as a reference for these novel laboratory variables. LDL susceptibility to oxidation was higher and HDL-antioxidant capacity lower in the ACS patients than in the non-ACS individuals. ACS patients had lower HDL-C and Apolipoprotein A-I levels than non-ACS patients despite the same prevalence of classical cardiovascular risk factors. Cholesterol efflux potential was impaired only in the ACS patients. ACS-STEMI (Acute Coronary Syndrome—ST-segment-elevation myocardial infarction) patients, had a larger HDL particle diameter than non-ACS individuals (8.4 ± 0.02 vs. 8.3 ± 0.02 and, ANOVA test, p = 0.004). In conclusion, patients admitted for chest pain with a first-onset ACS and on-target lipid levels had impaired lipoprotein functionality and NMR measured larger HDL particles. This study shows the relevance of HDL functionality rather than HDL-C concentration in ACS patients.
Collapse
|
11
|
Schachtl-Riess JF, Schönherr S, Lamina C, Forer L, Coassin S, Streiter G, Kheirkhah A, Li Y, Meiselbach H, Di Maio S, Eckardt KU, Köttgen A, Kronenberg F. KLKB1 and CLSTN2 are associated with HDL-mediated cholesterol efflux capacity in a genome-wide association study. Atherosclerosis 2023; 368:1-11. [PMID: 36812656 DOI: 10.1016/j.atherosclerosis.2023.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS HDL-mediated cholesterol efflux capacity (CEC) may protect from cardiovascular disease. Thus, we aimed to identify its genetic and non-genetic determinants. METHODS We measured CEC to 2% apolipoprotein B-depleted serum using BODIPY-cholesterol and cAMP-stimulated J774A.1 macrophages using serum samples from 4,981 participants in the German Chronic Kidney Disease (GCKD) study. Variance of CEC explained by clinical and biochemical parameters in a multivariable linear regression model was calculated by proportional marginal variance decomposition. A genome-wide association study with 7,746,917 variants was performed based on an additive genetic model. The main model was adjusted for age, sex and principal components 1-10. Further models were selected for sensitivity analysis and to reduce residual variance by known CEC pathways. RESULTS Variables that explained 1% and more of the variance of CEC were concentrations of triglycerides (12.9%), HDL-cholesterol (11.8%), LDL-cholesterol (3.0%), apolipoprotein A-IV (2.8%), PCSK9 (1.0%), and eGFR (1.0%). The KLKB1 (chr4) and APOE/C1 (chr19) loci were genome-wide significantly (p < 5x10-8) associated with CEC in our main model (p = 8.8x10-10 and p = 3.3x10-10, respectively). KLKB1 remained significantly associated after additional adjustment for either kidney parameters, HDL-cholesterol, triglycerides or apolipoprotein A-IV concentrations, while the APOE/C1 locus was not significantly associated anymore after adjustment for triglycerides. Adjustment for triglycerides also revealed an association with the CLSTN2 locus (chr3; p = 6.0x10-9). CONCLUSIONS We identified HDL-cholesterol and triglycerides as the main determinants of CEC. Furthermore, we newly found a significant association of CEC with the KLKB1 and the CLSTN2 locus and confirmed the association with the APOE/C1 locus, likely mediated by triglycerides.
Collapse
Affiliation(s)
- Johanna F Schachtl-Riess
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Azin Kheirkhah
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Papagiannis A, Gkolfinopoulou C, Tziomalos K, Dedemadi AG, Polychronopoulos G, Milonas D, Savopoulos C, Hatzitolios AI, Chroni A. HDL cholesterol efflux capacity and phospholipid content are associated with the severity of acute ischemic stroke and predict its outcome. Clin Chim Acta 2023; 540:117229. [PMID: 36657609 DOI: 10.1016/j.cca.2023.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Impaired high-density lipoprotein (HDL) function and composition are more strongly related to cardiovascular morbidity than HDL concentration. However, it is unclear whether HDL function and composition predict ischemic stroke severity and outcome. We aimed to evaluate these associations. METHODS We prospectively studied 199 consecutive patients who were admitted with acute ischemic stroke. The severity of stroke was evaluated at admission with the National Institutes of Health Stroke Scale (NIHSS). Severe stroke was defined as NIHSS ≥ 5. The outcome was assessed with dependency at discharge (modified Rankin scale 2-5) and in-hospital mortality. Cholesterol efflux capacity (CEC), phospholipid levels, lecithin:cholesterol acyl transferase (LCAT)-phospholipase activity, paraoxonase-1 (PON1)-arylesterase activity and serum amyloid A1 (SAA1) content of HDL were measured. RESULTS CEC, phospholipid levels and LCAT-phospholipase activity of HDL were lower and SAA1 content of HDL was higher in patients with severe stroke. Patients who were dependent at discharge had lower CEC, PON1-arylesterase activity, phospholipid content and LCAT-phospholipase activity of HDL and higher HDL-SAA1 content. Independent predictors of dependency at discharge were the NIHSS at admission (RR 2.60, 95% CI 1.39-4.87), lipid-lowering treatment (RR 0.17, 95% CI 0.01-0.75), HDL-CEC (RR 0.21, 95% CI 0.05-0.87) and HDL-associated PON1-arylesterase activity (RR 0.95, 95% CI 0.91-0.99). In patients who died during hospitalization, phospholipids, LCAT-phospholipase and PON1-arylesterase activities of HDL were lower. CONCLUSIONS Changes in CEC and composition of HDL appear to be associated with the severity and outcome of acute ischemic stroke and could represent biomarkers that may inform risk stratification and management strategies in these patients.
Collapse
Affiliation(s)
- Achilleas Papagiannis
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| | - Anastasia-Georgia Dedemadi
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Georgios Polychronopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Dimitrios Milonas
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Apostolos I Hatzitolios
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
13
|
Badia RR, Pradhan RV, Ayers CR, Chandra A, Rohatgi A. The Relationship of Alcohol Consumption and HDL Metabolism in the Multiethnic Dallas Heart Study. J Clin Lipidol 2023; 17:124-130. [PMID: 36464598 DOI: 10.1016/j.jacl.2022.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Small studies have suggested that moderate alcohol consumption increases HDL cholesterol (HDL-C) levels and cholesterol efflux capacity (CEC), a main anti-atherosclerotic HDL function. OBJECTIVES This study aimed to understand the degree to which alcohol intake is associated with various HDL markers in a large, multiethnic population cohort, the Dallas Heart Study (DHS), and whether alcohol modifies the link between HDL markers and atherosclerotic cardiovascular disease (ASCVD). METHODS Participants of the DHS were included if they had self-reported alcohol intake and CEC measurements (N=2,919). Alcohol intake was analyzed continuously (grams/week) and as an ordered categorical variable (never, past, light, moderate, heavy, and binge drinkers). HDL-C, CEC, HDL particle number (HDL-P), HDL particle size (HDL-size), and ApoA-I were the primary HDL measures. RESULTS After adjustment for confounding variables, increasing continuous measure of alcohol intake was associated with increased levels of all HDL markers. Moreover, as compared to moderate drinkers, light drinkers had decreased levels of the HDL markers. CONCLUSION In a large, multiethnic cohort, increased alcohol intake was associated with increased levels of multiple markers of HDL metabolism. However, the association of HDL markers with ASCVD risk as modified by alcohol consumption is unable to be determined in this low-risk cohort.
Collapse
Affiliation(s)
- Rohit R Badia
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, , 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Roma V Pradhan
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, , 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Colby R Ayers
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, , 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Alvin Chandra
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, , 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Anand Rohatgi
- Department of Internal Medicine Division of Cardiology, University of Texas Southwestern Medical Center, , 5323 Harry Hines Blvd, Dallas, TX 75390, United States.
| |
Collapse
|
14
|
Grundler F, Viallon M, Mesnage R, Ruscica M, von Schacky C, Madeo F, Hofer SJ, Mitchell SJ, Croisille P, Wilhelmi de Toledo F. Long-term fasting: Multi-system adaptations in humans (GENESIS) study-A single-arm interventional trial. Front Nutr 2022; 9:951000. [PMID: 36466423 PMCID: PMC9713250 DOI: 10.3389/fnut.2022.951000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Fasting provokes fundamental changes in the activation of metabolic and signaling pathways leading to longer and healthier lifespans in animal models. Although the involvement of different metabolites in fueling human fasting metabolism is well known, the contribution of tissues and organs to their supply remains partly unclear. Also, changes in organ volume and composition remain relatively unexplored. Thus, processes involved in remodeling tissues during fasting and food reintroduction need to be better understood. Therefore, this study will apply state-of-the-art techniques to investigate the effects of long-term fasting (LF) and food reintroduction in humans by a multi-systemic approach focusing on changes in body composition, organ and tissue volume, lipid transport and storage, sources of protein utilization, blood metabolites, and gut microbiome profiles in a single cohort. This is a prospective, single-arm, monocentric trial. One hundred subjects will be recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will assess changes in the composition of organs, bones and blood lipid profiles before and after fasting, as well as high-density lipoprotein (HDL) transport and storage, untargeted metabolomics of peripheral blood mononuclear cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut microbiome. The first 32 subjects, fasting for 12 days, will be examined in more detail by magnetic resonance imaging (MRI) and spectroscopy to provide quantitative information on changes in organ volume and function, followed by an additional follow-up examination after 1 and 4 months. The study protocol was approved by the ethics board of the State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered at ClinicalTrials.gov (NCT05031598). The results will be disseminated through peer-reviewed publications, international conferences and social media. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05031598].
Collapse
Affiliation(s)
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | | |
Collapse
|
15
|
Mietus-Snyder M, Suslovic W, Delaney M, Playford MP, Ballout RA, Barber JR, Otvos JD, DeBiasi RL, Mehta NN, Remaley AT. Changes in HDL cholesterol, particles, and function associate with pediatric COVID-19 severity. Front Cardiovasc Med 2022; 9:1033660. [PMID: 36312284 PMCID: PMC9597312 DOI: 10.3389/fcvm.2022.1033660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Myriad roles for high-density lipoprotein (HDL) beyond atheroprotection include immunologic functions implicated in the severity of coronavirus disease-2019 (COVID-19) in adults. We explored whether there is an association between HDL and COVID-19 severity in youth. Methods A pediatric cohort (N = 102), who tested positive for COVID-19 across a range of disease manifestations from mild or no symptoms, to acute severe symptoms, to the multisystem inflammatory syndrome of children (MIS-C) was identified. Clinical data were collected from the medical record and reserve plasma aliquots were assessed for lipoproteins by NMR spectroscopy and assayed for HDL functional cholesterol efflux capacity (CEC). Findings were compared by COVID-19 status and symptom severity. Lipoprotein, NMR spectroscopy and CEC data were compared with 30 outpatient COVID negative children. Results Decreasing HDL cholesterol (HDL-c), apolipoprotein AI (ApoA-I), total, large and small HDL particles and HDL CEC showed a strong and direct linear dose-response relationship with increasing severity of COVID-19 symptoms. Youth with mild or no symptoms closely resembled the uninfected. An atypical lipoprotein that arises in the presence of severe hepatic inflammation, lipoprotein Z (LP-Z), was absent in COVID-19 negative controls but identified more often in youth with the most severe infections and the lowest HDL parameters. The relationship between HDL CEC and symptom severity and ApoA-I remained significant in a multiply adjusted model that also incorporated age, race/ethnicity, the presence of LP-Z and of GlycA, a composite biomarker reflecting multiple acute phase proteins. Conclusion HDL parameters, especially HDL function, may help identify youth at risk of more severe consequences of COVID-19 and other novel infectious pathogens.
Collapse
Affiliation(s)
- Michele Mietus-Snyder
- Children's National Hospital, Washington, DC, United States
- The Children's National Clinical and Translational Science Institute, Washington, DC, United States
- Division of Cardiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | - Meghan Delaney
- Children's National Hospital, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Division of Clinical and Laboratory Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Martin P. Playford
- Cardiovascular and Pulmonary Branch, National Institutes of Health, Bethesda, MD, United States
| | - Rami A. Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - John R. Barber
- The Children's National Clinical and Translational Science Institute, Washington, DC, United States
| | - James D. Otvos
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Roberta L. DeBiasi
- Children's National Hospital, Washington, DC, United States
- The Children's National Clinical and Translational Science Institute, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Division of Infectious Diseases, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Nehal N. Mehta
- Cardiovascular and Pulmonary Branch, National Institutes of Health, Bethesda, MD, United States
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Clinical Center, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Zheng B, Goto S, Clementi R, Feaster J, Duffy D, Dalitz P, Airey J, Korjian S, Tortorici MA, Roberts J, Gibson CM. Effect of CSL112 (apolipoprotein A-I [human]) on cholesterol efflux capacity in Japanese subjects: Findings from a phase I study and a cross-study comparison. Clin Transl Sci 2022; 15:2331-2341. [PMID: 35933730 PMCID: PMC9579388 DOI: 10.1111/cts.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
CSL112 (apolipoprotein A-I [apoA-I, human]) is a novel drug in development to reduce the risk of recurrent cardiovascular events following acute myocardial infarction by increasing cholesterol efflux capacity (CEC). This phase I study aimed to compare the pharmacokinetics (PKs), pharmacodynamics (PDs), and safety of CSL112 in Japanese and White subjects. A total of 34 Japanese subjects were randomized to receive a single infusion of CSL112 (2, 4, or 6 g) or placebo and 18 White subjects were randomized to receive a single dose of 6 g CSL112 or placebo, followed by PK/PD assessment and adverse events monitoring. In addition, PK/PD parameters were compared across the CSL112 clinical development program. Plasma exposure of apoA-I increased in a dose-dependent but nonlinear manner in Japanese subjects receiving a single dose of CSL112. Mean baseline-corrected area under the curve from 0 to 72 h (AUC0-72 ) increased from 840 to 6490 mg h/dl, in the 2 and 6 g cohorts, respectively, followed by dose-dependent increase of CEC. The plasma PK profile of apoA-I and increases in total and ATP binding cassette transporter A1 dependent CEC were comparable in Japanese and White subjects. The geometric mean ratio (Japanese:White) for plasma apoA-I AUC0-72 and maximum plasma concentration (Cmax ) was 1.08 and 0.945, respectively. Cross-study comparison analysis demonstrated similar CSL112 exposure and CEC enhancement in Japanese and non-Japanese subjects (including patients with cardiovascular disease) and further confirmed consistent PKs/PDs of CSL112. This study suggests CSL112 acutely enhances CEC and is well-tolerated with no differences between Japanese and White subjects.
Collapse
Affiliation(s)
- Bo Zheng
- CSL BehringKing of PrussiaPennsylvaniaUSA
| | - Shinya Goto
- Department of Medicine (Cardiology)Tokai University School of MedicineIseharaJapan
| | | | | | | | | | | | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - C. Michael Gibson
- PERFUSE Study Group, Cardiovascular Division, Departments of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
17
|
Pisciotta L, Ossoli A, Ronca A, Garuti A, Fresa R, Favari E, Calabresi L, Calandra S, Bertolini S. Plasma HDL pattern, cholesterol efflux and cholesterol loading capacity of serum in carriers of a novel missense variant (Gly176Trp) of endothelial lipase. J Clin Lipidol 2022; 16:694-703. [PMID: 36002365 DOI: 10.1016/j.jacl.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Loss of function variants of LIPG gene encoding endothelial lipase (EL) are associated with primary hyperalphalipoproteinemia (HALP), a lipid disorder characterized by elevated plasma levels of high density lipoprotein cholesterol (HDL-C). OBJECTIVE Aim of the study was the phenotypic and genotypic characterization of a family with primary HALP. METHODS HDL subclasses distribution was determined by polyacrylamide gradient gel electrophoresis. Serum content of preβ-HDL was assessed by (2D)-electrophoresis. Cholesterol efflux capacity (CEC) of serum mediated by ABCA1, ABCG1 or SR-BI was assessed using cells expressing these proteins. Cholesterol loading capacity (CLC) of serum was assayed using cultured human macrophages. Next generation sequencing was used for DNA analysis. Plasma EL mass was determined by ELISA. RESULTS Three family members had elevated plasma HDL-C, apoA-I and total phospholipids, as well as a reduced content of preβ-HDL. These subjects were heterozygous carriers of a novel variant of LIPG gene [c.526 G>T, p.(Gly176Trp)] found to be deleterious in silico. Plasma EL mass in carriers was lower than in controls. CEC of sera mediated by ABCA1 and ABCG1 transporters was substantially reduced in the carriers. This effect was maintained after correction for serum HDL concentration. The sera of carriers were found to have a higher CLC in cultured human macrophages than control sera. CONCLUSION The novel p.(Gly176Trp) variant of endothelial lipase is associated with changes in HDL composition and subclass distribution as well as with functional changes affecting cholesterol efflux capacity of serum which suggest a defect in the early steps of revere cholesterol transport.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini); Dietetics and Clinical Nutrition Unit, IRCCS-Polyclinic Hospital San Martino, Genoa, Italy (Dr Pisciotta).
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Raffaele Fresa
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (Dr Calandra)
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| |
Collapse
|
18
|
Denimal D, Monier S, Simoneau I, Duvillard L, Vergès B, Bouillet B. HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control. Cardiovasc Diabetol 2022; 21:154. [PMID: 35962339 PMCID: PMC9375300 DOI: 10.1186/s12933-022-01591-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Background Reduced cholesterol efflux capacity (CEC) of HDLs is likely to increase cardiovascular risk in type 1 diabetes (T1D). We aimed to assess whether improvement of glycemic control in T1D patients is associated with changes in CEC in relation with changes in carbamylation of HDLs. Methods In this open-label trial, 27 uncontrolled T1D patients were given a three-month standard medical intervention to improve glycemic control. HDL fraction was isolated from plasma, and CEC was measured on THP-1 macrophages. Carbamylation of HDLs was evaluated by an immunoassay. Control HDLs from healthy subjects were carbamylated in vitro with potassium cyanate. Results HbA1c decreased from 11.4% [10.2–12.9] (median [1st–3rd quartiles]) at baseline to 8.1% [6.6–9.0] after the three-month intervention (P < 0.00001). The CEC of HDLs increased after intervention in 19 (70%) patients (P = 0.038). At the same time, the carbamylation of HDLs decreased in 22 (82%) patients after intervention (P = 0.014). The increase in CEC significantly correlated with the decrease in carbamylated HDLs (r = −0.411, P = 0.034), even after adjustment for the change in HbA1c (β = −0.527, P = 0.003). In vitro carbamylation of control HDLs decreased CEC by 13% (P = 0.041) and 23% (P = 0.021) using 1 and 10 mmol/L of potassium cyanate, respectively. Conclusions The improvement of CEC in relation to a decrease in the carbamylation of HDLs may likely contribute to the beneficial cardiovascular effect of glycemic control in T1D patients. Trial registration: NCT02816099 ClinicalTrials.gov.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM LNC UMR1231, University of Burgundy, Dijon, France. .,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France.
| | - Serge Monier
- INSERM LNC UMR1231, University of Burgundy, Dijon, France
| | - Isabelle Simoneau
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Laurence Duvillard
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Biochemistry - Plateforme de Biologie Hospitalo-Universitaire, CHU Dijon, Dijon, France
| | - Bruno Vergès
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| | - Benjamin Bouillet
- INSERM LNC UMR1231, University of Burgundy, Dijon, France.,Department of Endocrinology-Diabetology, CHU Dijon, Dijon, France
| |
Collapse
|
19
|
Jin A, Wang M, Chen W, Yan H, Xiang X, Pan Y. Differential Effects of Genetically Determined Cholesterol Efflux Capacity on Coronary Artery Disease and Ischemic Stroke. Front Cardiovasc Med 2022; 9:891148. [PMID: 35859596 PMCID: PMC9289203 DOI: 10.3389/fcvm.2022.891148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Observational studies indicated that cholesterol efflux capacity (CEC) of high-density lipoprotein (HDL) is inversely associated with cardiovascular events, independently of the HDL cholesterol concentration. The aim of the study is to examine the casual relevance of CEC for coronary artery disease (CAD) and myocardial infarction (MI), and compare it with that for ischemic stroke and its subtypes using a Mendelian randomization approach. Methods We performed a 2-sample Mendelian randomization to estimate the casual relationship of CEC with the risk of CAD, MI, and ischemic stroke. A CEC-related genetic variant (rs141622900) and other five genetic variants were used as the instrumental variables. Association of genetic variants with CAD were estimated in a GWAS involving 60,801 CAD cases and 123,504 controls. They were then compared with the associations of these variants with ischemic stroke and its subtypes (large vessel, small vessel, and cardioembolic) involving 40,585 ischemic stroke cases and 406,111 controls. Results Using the SNP of rs141622900 as the instrument, a 1-SD increase in CEC was associated with 45% lower risk for CAD (odds ratio [OR] 0.55, 95% confidence interval [CI] 0.44–0.69, p < 0.001) and 33% lower risk for MI (odds ratio [OR] 0.67, 95% CI 0.52–0.87, p = 0.002). By contrast, the causal effect of CEC was much weaker for ischemic stroke (odds ratio [OR] 0.79, 95% CI 0.64–0.97, p = 0.02; p for heterogeneity = 0.03) and, in particular, for cardioembolic stroke (p for heterogeneity = 0.006) when compared with that for CAD. Results using five genetic variants as the instrument also indicated consistently weaker effects on ischemic stroke than on CAD. Conclusion Genetic predicted higher CEC may be associated with decreased risk of CAD. However, the casual association of CEC with ischemic stroke and specific subtypes would need to be validated in further Mendelian randomization studies.
Collapse
Affiliation(s)
- Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xianglong Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuesong Pan
| |
Collapse
|
20
|
Guo W, Pencina KM, Furtado JD, Sacks FM, Vaisar T, Cheng M, Sniderman AD, Page ST, Bhasin S. Effect of Selective Androgen Receptor Modulator on Cholesterol Efflux Capacity, Size and Subspecies of HDL Particles. J Endocr Soc 2022; 6:bvac099. [PMID: 35822201 PMCID: PMC9271272 DOI: 10.1210/jendso/bvac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Context Selective androgen receptor modulators (SARMs), because of their preferential muscle vs prostate selectivity, are being developed for muscle-wasting conditions. Oral SARMs suppress high-density lipoprotein cholesterol (HDL-C) but their effects on functional capacity and atherogenic potential of HDL particles are unknown. Objective To determine the effects of an oral SARM (OPK-88004) on cholesterol efflux capacity, HDL particle number and size, apolipoprotein particle number and size and HDL subspecies Methods We measured cholesterol efflux capacity (CEC); HDL particle number and size; APOB; APOA1; and protein-defined HDL subspecies associated with coronary heart disease (CHD) risk in men, who had undergone prostatectomy for low-grade prostate cancer during 12-week treatment with placebo or 1, 5, or 15 mg of an oral SARM (OPK-88004). Results SARM significantly suppressed HDL-C (P < .001) but HDL particle size did not change significantly. SARM had minimal effect on CEC of HDL particles (change + 0.016, –0.036, +0.070, and –0.048%/µmol-HDL/L–1 at 0, 1, 5, and 15 mg SARM, P = .045). SARM treatment suppressed APOAI (P < .001) but not APOB (P = .077), and reduced APOA1 in HDL subspecies associated with increased (subspecies containing α2-macroglobulin, complement C3, or plasminogen) as well as decreased (subspecies containing APOC1 or APOE) CHD risk; relative proportions of APOA1 in these HDL subspecies did not change. SARM increased hepatic triacylglycerol lipase (HTGL) (P < .001). Conclusion SARM treatment suppressed HDL-C but had minimal effect on its size or cholesterol efflux function. SARM reduced APOA1 in HDL subspecies associated with increased as well as decreased CHD risk. SARM-induced increase in HTGL could contribute to HDL-C suppression. These data do not support the simplistic notion that SARM-associated suppression of HDL-C is necessarily proatherogenic; randomized trials are needed to determine SARM’s effects on cardiovascular events.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Karol M Pencina
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard TH Chan School of Public Health , Boston, MA
| | - Frank M Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health , Boston, MA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition , University of Washington, Seattle, WA
| | - Ming Cheng
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - Allan D Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre , Montreal, Quebec, Canada
| | - Stephanie T Page
- Division of Metabolism, Endocrinology, and Nutrition , University of Washington, Seattle, WA
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism; Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| |
Collapse
|
21
|
Takeda T, Ide T, Okuda D, Kuroda M, Asada S, Kirinashizawa M, Yamamoto M, Miyoshi J, Yokote K, Mizutani N. A novel homozygous frameshift mutation in the APOA1 gene associated with marked high-density lipoprotein deficiency. J Clin Lipidol 2022; 16:423-433. [DOI: 10.1016/j.jacl.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
|
22
|
Cheng W, Rosolowski M, Boettner J, Desch S, Jobs A, Thiele H, Buettner P. High-density lipoprotein cholesterol efflux capacity and incidence of coronary artery disease and cardiovascular mortality: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:47. [PMID: 35643463 PMCID: PMC9148501 DOI: 10.1186/s12944-022-01657-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Background The preventive effect of cholesterol efflux capacity (CEC) on the progression of atherosclerotic lesions has been confirmed in animal models, but findings in the population are inconsistent. Therefore, this meta-analysis aimed to systematically investigate the relationship of CEC with coronary artery disease (CAD) and cardiovascular mortality in a general population. Methods Four electronic databases (PubMed, Embase database, Cochrane Library, Web of Science) were searched from inception to February 1st, 2022 for relevant studies, without any language restriction. For continuous variables, the mean and standard deviation (SD), maximum adjusted odds ratios (ORs), relative risks (RRs), or hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted. The random-effects model was adopted to calculate the pooled results, and dose-response analyses were conducted. All pooled results were expressed by standardized mean difference (SMD) and ORs. Results Finally, 18 observational studies were included. Compared with the non-CAD group, the CAD group (SMD -0.48, 95% CI − 0.66 to − 0.30; I2 88.9%) had significantly lower CEC. In the high-CEC population, the risks of CAD (OR 0.52, 95% CI 0.37 to 0.71; I2 81%) significantly decreased, and a linear negative dose-response was detected. However, an association between CEC and the risk of cardiovascular mortality was not found (OR 0.44, 95% CI 0.18 to 1.06; I2 83.2%). Conclusions This meta-analysis suggests that decreased CEC is strongly associated with the risk of CAD, independent of HDL-C level. However, a decreased CEC seems not to be related to cardiovascular mortality. Meanwhile, CEC is linearly negatively correlated with the risk of CAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01657-3.
Collapse
|
23
|
Kingwell BA, Nicholls SJ, Velkoska E, Didichenko SA, Duffy D, Korjian S, Gibson CM. Antiatherosclerotic Effects of CSL112 Mediated by Enhanced Cholesterol Efflux Capacity. J Am Heart Assoc 2022; 11:e024754. [PMID: 35411789 PMCID: PMC9238469 DOI: 10.1161/jaha.121.024754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 12% of patients with acute myocardial infarction (AMI) experience a recurrent major adverse cardiovascular event within 1 year of their primary event, with most occurring within the first 90 days. Thus, there is a need for new therapeutic approaches that address this 90-day post-AMI high-risk period. The formation and eventual rupture of atherosclerotic plaque that leads to AMI is elicited by the accumulation of cholesterol within the arterial intima. Cholesterol efflux, a mechanism by which cholesterol is removed from plaque, is predominantly mediated by apolipoprotein A-I, which is rapidly lipidated to form high-density lipoprotein in the circulation and has atheroprotective properties. In this review, we outline how cholesterol efflux dysfunction leads to atherosclerosis and vulnerable plaque formation, including inflammatory cell recruitment, foam cell formation, the development of a lipid/necrotic core, and degradation of the fibrous cap. CSL112, a human plasma-derived apolipoprotein A-I, is in phase 3 of clinical development and aims to reduce the risk of recurrent cardiovascular events in patients with AMI in the first 90 days after the index event by increasing cholesterol efflux. We summarize evidence from preclinical and clinical studies suggesting that restoration of cholesterol efflux by CSL112 can stabilize plaque by several anti-inflammatory/immune-regulatory processes. These effects occur rapidly and could stabilize vulnerable plaques in patients who have recently experienced an AMI, thereby reducing the risk of recurrent major adverse cardiovascular events in the high-risk early post-AMI period.
Collapse
Affiliation(s)
| | | | | | | | | | - Serge Korjian
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - C Michael Gibson
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| |
Collapse
|
24
|
Gibson CM, Kazmi SHA, Korjian S, Chi G, Phillips AT, Montazerin SM, Duffy D, Zheng B, Heise M, Liss C, Deckelbaum LI, Wright SD, Gille A. CSL112 (Apolipoprotein A-I [Human]) Strongly Enhances Plasma Apoa-I and Cholesterol Efflux Capacity in Post-Acute Myocardial Infarction Patients: A PK/PD Substudy of the AEGIS-I Trial. J Cardiovasc Pharmacol Ther 2022; 27:10742484221121507. [DOI: 10.1177/10742484221121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction: Cholesterol efflux capacity (CEC) is impaired following acute myocardial infarction (AMI). CSL112 is an intravenous preparation of human plasma-derived apoA-I formulated with phosphatidylcholine (PC). CSL112 is intended to improve CEC and thereby prevent early recurrent cardiovascular events following AMI. AEGIS-I (ApoA-I Event Reducing in Ischemic Syndromes I) was a multicenter, randomized, double-blind, placebo-controlled, dose-ranging phase 2b study, designed to evaluate the hepatic and renal safety of CSL112. Here, we report an analysis of a pharmacokinetic (PK) and pharmacodynamic (PD) substudy of AEGIS-I. Methods: AMI patients were stratified by renal function and randomized 3:3:2 to 4, weekly, 2-hour infusions of low- and high-dose (2 g and 6 g) CSL112, or placebo. PK/PD assessments included plasma concentrations of apoA-I and PC, and measures of total and ABCA1-dependent CEC, as well as lipids/lipoproteins including high density lipoprotein cholesterol (HDL-C), non-HDL-C, low density lipoprotein cholesterol (LDL-C), ApoB, and triglycerides. Inflammatory and cardio-metabolic biomarkers were also evaluated. Results: The substudy included 63 subjects from AEGIS-I. CSL112 infusions resulted in rapid, dose-dependent increases in baseline corrected apoA-I and PC, which peaked at the end of the infusion (Tmax ≈ 2 hours). Similarly, there was a dose-dependent elevation in both total CEC and ABCA1-mediated CEC. Mild renal impairment did not affect the PK or PD of CSL112. CSL112 administration was also associated with an increase in plasma levels of HDL-C but not non-HDL-C, LDL-C, apoB, or triglycerides. No dose-effects on inflammatory or cardio-metabolic biomarkers were observed. Conclusion: Among patients with AMI, impaired CEC was rapidly elevated by CSL112 infusions in a dose-dependent fashion, along with an increase in apoA-I plasma concentrations. Findings from the current sub-study of the AEGIS-I support a potential atheroprotective benefit of CSL112 for AMI patients.
Collapse
Affiliation(s)
- C. Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Syed Hassan A. Kazmi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam T. Phillips
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sahar Memar Montazerin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Bo Zheng
- CSL Behring, King of Prussia, PA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Martin M, Gaete L, Tetzlaff W, Ferraro F, Lozano Chiappe E, Botta EE, Osta V, Saez MS, Lorenzon Gonzalez MV, Palenque P, Ballerini G, Sorroche P, Boero L, Triffone L, Brites F. Vascular inflammation and impaired reverse cholesterol transport and lipid metabolism in obese children and adolescents. Nutr Metab Cardiovasc Dis 2022; 32:258-268. [PMID: 34895801 DOI: 10.1016/j.numecd.2021.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Childhood obesity is associated to complications such as insulin resistance and dyslipidemia. High density lipoproteins (HDL) constitute the only lipoprotein fraction with ateroprotective properties. The aim of the present study was to analyze inflammatory markers, carbohydrate metabolism, lipid profile and HDL functionality in obese children and adolescents compared to healthy controls. METHODS AND RESULTS Twenty obese children and adolescents (Body mass index z score >3.0) (9-15 years old) and 20 age and sex similar controls were included in the study. Triglyceride (TG), total cholesterol (TC), HDL-C, LDL-C, apolipoproteins (apo) A-I and B, glucose and insulin levels were quantified. Lipid indexes and HOMA-IR were calculated. Cholesterol efflux (CEC), lipoprotein associated phospholipase A2 (Lp-PLA2), lecithin-cholesterol acyl transferase (LCAT) and cholesteryl ester transfer protein, plus paraoxonase and arylesterase (ARE) activities were evaluated. Obese children and adolescents showed significantly higher TG [69 (45-95) vs 96 (76-121); p < 0.05], non-HDL-C [99 ± 34 vs 128 ± 26; p < 0.01], TC/HDL-C [2.8 ± 0.6 vs 4.7 ± 1.5; p < 0.01], TG/HDL-C [1.1 (1.0-1.8) vs 2,2 (1.4-3.2); p < 0.01], and HOMA-IR [1.5 (1.1-1.9) vs. 2.6 (2.0-4.5); p < 0.01] values, plus Lp-PLA2 activity [8.3 ± 1.9 vs 7.1 ± 1.7 umol/ml.h; p < 0,05] in addition to lower HDL-C [57 ± 10 vs 39 ± 9; p < 0.01], apo A-I [143 ± 25 vs 125 ± 19; p < 0.05], and CEC [6.4 (5.1-6.8) vs. 7.8 (5.7-9.5); p < 0.01] plus LCAT [12.6 ± 3.3 vs 18.7 ± 2.6; p < 0.05] and ARE [96 ± 19 vs. 110 ± 19; p < 0.05] activities. Lp-PLA2 activity correlated with LDL-C (r = 0.72,p < 0.01), non-HDL-C (r = 0.76,p < 0.01), and apo B (r = 0.60,p < 0.01). LCAT activity correlated with triglycerides (r = -0.78,p < 0.01), HDL-C (r = 0.64,p < 0.01), and apo A-I (r = 0.62, p < 0.05). ARE activity correlated with HDL-C (r = 0.32,p < 0.05) and apoA-I (r = 0.43,p < 0.01). CEC was negatively associated with BMI z-score (r = -0.36,p < 0.05), and triglycerides (r = -0.28,p < 0.05), and positively with LCAT activity (r = 0.65,p < 0.05). In multivariate analysis, BMI z-score was the only parameter significantly associated to CEC (r2 = 0.43, beta = -0.38, p < 0.05). CONCLUSION The obese group showed alterations in carbohydrate and lipid metabolism, which were associated to the presence of vascular specific inflammation and impairment of HDL atheroprotective capacity. These children and adolescents would present qualitative alterations in their lipoproteins which would determine higher risk of suffering premature cardiovascular disease.
Collapse
Affiliation(s)
- Maximiliano Martin
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| | - Laura Gaete
- Servicio de Nutrición y Diabetes, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Walter Tetzlaff
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Florencia Ferraro
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Ezequiel Lozano Chiappe
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Eliana E Botta
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Viviana Osta
- Laboratorio Central, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Maria S Saez
- Laboratorio Central, Hospital Italiano de Buenos Aires, Argentina
| | | | - Patricia Palenque
- Servicio de Nutrición y Diabetes, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Gabriela Ballerini
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | - Laura Boero
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Liliana Triffone
- Servicio de Nutrición y Diabetes, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| |
Collapse
|
26
|
Lee JJ, Chi G, Fitzgerald C, Kazmi SHA, Kalayci A, Korjian S, Duffy D, Shaunik A, Kingwell B, Yeh RW, Bhatt DL, Gibson CM. Cholesterol Efflux Capacity and Its Association With Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:774418. [PMID: 34966797 PMCID: PMC8710716 DOI: 10.3389/fcvm.2021.774418] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Serum high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with cardiovascular disease events. Yet, emerging evidence suggests that it is the functional properties of HDL, in particular, reverse cholesterol transport, which is a key protective mechanism mediating cholesterol removal from macrophage cells and reducing plaque lipid content. Cholesterol efflux capacity (CEC) measures the capacity of HDL to perform this function. A systematic review and meta-analysis were conducted to explore the association of CEC and adverse cardiovascular events. Methods: A comprehensive literature review of Embase, PubMed, and Web of Science Core Collection from inception to September 2019 was performed for all studies that examined the association between CEC and cardiovascular outcomes. The primary outcome was adverse cardiovascular events, which were inclusive of atherosclerotic cardiovascular disease (ASCVD) or mortality. Results: A total of 20 trials were included. Compared with low CEC levels, high CEC levels were associated with a 37% lower risk of adverse cardiovascular events (crude RR = 0.63; 95% CI, 0.52–0.76; P < 0.00001). Every SD increase of CEC was associated with a 20% lower risk of adverse cardiovascular events (HR = 0.80; 95% CI, 0.66–0.97; P = 0.02). The association remained significant after adjusting for cardiovascular risk factors, medications, and HDL-C levels (HR = 0.76; 95% CI, 0.63–0.91; P = 0.004). A significant CEC-endpoint relationship was observed (P = 0.024) such that for every 0.1 unit increase in CEC, there was a 5% reduced risk for adverse cardiovascular events (RR = 0.95; 95% CI, 0.91–0.99). Conclusions: Higher CEC is associated with lower adverse cardiovascular outcomes. These findings warrant further research on whether CEC is merely a biomarker or a mechanism that could be targeted as a pharmacologic intervention for improving clinical outcomes. PROSPERO Registration Number: CRD42020146681; https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Jane J Lee
- Baim Institute for Clinical Research, Boston, MA, United States
| | - Gerald Chi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Clara Fitzgerald
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Syed Hassan A Kazmi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Arzu Kalayci
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Serge Korjian
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | | | | | - Robert W Yeh
- Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Deepak L Bhatt
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - C Michael Gibson
- Baim Institute for Clinical Research, Boston, MA, United States.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Schachtl-Riess JF, Coassin S, Lamina C, Demetz E, Streiter G, Hilbe R, Kronenberg F. Lysis reagents, cell numbers, and calculation method influence high-throughput measurement of HDL-mediated cholesterol efflux capacity. J Lipid Res 2021; 62:100125. [PMID: 34571016 PMCID: PMC8521207 DOI: 10.1016/j.jlr.2021.100125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
HDL-mediated cholesterol efflux capacity (CEC) may protect against cardiovascular disease. However, CEC assays are not standardized, hampering their application in large cohorts and comparison between studies. To improve standardization, we systematically investigated technical differences between existing protocols that influence assay performance that have not been previously addressed. CEC was measured in 96-well plates using J774A.1 macrophages labeled with BODIPY-cholesterol and incubated for 4 h with 2% apolipoprotein B-depleted human serum. The time zero method, which calculates CEC using control wells, and the per-well method, which calculates CEC based on the actual content of BODIPY-cholesterol in each well, were compared in 506 samples. We showed that the per-well method had a considerably lower sample rejection rate (4.74% vs. 13.44%) and intra-assay (4.48% vs. 5.28%) and interassay coefficients of variation (two controls: 7.85%, 9.86% vs. 13.58%, 15.29%) compared with the time zero method. Correction for plate-to-plate differences using four controls on each plate also improved assay performance of both methods. In addition, we observed that the lysis reagent used had a significant effect. Compared with cholic acid, lysis with sodium hydroxide results in higher (P = 0.0082) and Triton X-100 in lower (P = 0.0028) CEC values. Furthermore, large cell seeding errors (30% variation) greatly biased CEC for both referencing methods (P < 0.0001) as measured by a resazurin assay. In conclusion, lysis reagents, cell numbers, and assay setup greatly impact the quality and reliability of CEC quantification and should be considered when this method is newly established in a laboratory.
Collapse
Affiliation(s)
- Johanna F Schachtl-Riess
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Streiter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
28
|
Franczyk B, Rysz J, Ławiński J, Rysz-Górzyńska M, Gluba-Brzózka A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021; 9:1083. [PMID: 34572269 PMCID: PMC8466913 DOI: 10.3390/biomedicines9091083] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The specific interest concerning HDL cholesterol (HDL-C) is related to its ability to uptake and return surplus cholesterol from peripheral tissues back to the liver and, therefore, to its role in the prevention of cardiovascular diseases, such as atherosclerosis and myocardial infarction, but also transient ischemic attack and stroke. Previous epidemiological studies have indicated that HDL-C concentration is inversely associated with the risk of cardiovascular disease and that it can be used for risk prediction. Some genetic disorders are characterized by markedly elevated levels of HDL-C; however, they do not translate into diminished cardiovascular risk. The search of the potential causative relationship between HDL-C and adverse events has shifted the attention of researchers towards the composition and function of the HDL molecule/subfractions. HDL possesses various cardioprotective properties. However, currently, it appears that higher HDL-C is not necessarily protective against cardiovascular disease, but it can even be harmful in extremely high quantities.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-549 Rzeszow, Poland;
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
29
|
Cholesterol Efflux Capacity Associates with the Ankle-Brachial Index but Not All-Cause Mortality in Patients with Peripheral Artery Disease. Diagnostics (Basel) 2021; 11:diagnostics11081407. [PMID: 34441341 PMCID: PMC8394478 DOI: 10.3390/diagnostics11081407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cholesterol efflux is an important mechanism by which high-density lipoproteins (HDLs) protect against cardiovascular disease. As peripheral artery disease (PAD) is associated with high mortality rates, mainly due to cardiovascular causes, we investigated whether cholesterol efflux capacity (CEC) of apolipoprotein B (apoB)-depleted plasma, a widely used surrogate of HDL function, may serve as a predictive marker for mortality in this patient population. Methods: In this prospective single-center study (median follow-up time: 9.3 years), apoB-containing lipoproteins were precipitated from plasma of 95 patients with PAD and incubated with J744-macrophages, which were loaded with radiolabeled cholesterol. CEC was defined as the fractional radiolabel released during 4 h of incubation. Results: Baseline CEC was lower in PAD patients that currently smoked (p = 0.015) and had a history of myocardial infarction (p = 0.011). Moreover, CEC showed a significant correlation with HDL-cholesterol (p = 0.003) and apolipoprotein A-I levels (p = 0.001) as well as the ankle-brachial index (ABI, p = 0.018). However, CEC did not differ between survivors and non-survivors. Neither revealed Kaplan–Meier and Cox regression analyses any significant association of CEC with all-cause mortality rates. Conclusion: Taken together, CEC is associated with ABI but does not predict all-cause mortality in patients with PAD.
Collapse
|
30
|
Richter CK, Skulas-Ray AC, Gaugler TL, Meily S, Petersen KS, Kris-Etherton PM. Effects of Cranberry Juice Supplementation on Cardiovascular Disease Risk Factors in Adults with Elevated Blood Pressure: A Randomized Controlled Trial. Nutrients 2021; 13:nu13082618. [PMID: 34444779 PMCID: PMC8398037 DOI: 10.3390/nu13082618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging cardiovascular disease (CVD) risk factors, including central vascular function and HDL efflux, may be modifiable with food-based interventions such as cranberry juice. A randomized, placebo-controlled, crossover trial was conducted in middle-aged adults with overweight/obesity (n = 40; mean BMI: 28.7 ± 0.8 kg/m2; mean age: 47 ± 2 years) and elevated brachial blood pressure (mean systolic/diastolic BP: 124 ± 2/81 ± 1 mm Hg). Study participants consumed 500 mL/d of cranberry juice (~16 fl oz; 27% cranberry juice) or a matched placebo juice in a randomized order (8-week supplementation periods; 8-week compliance break), with blood samples and vascular measurements obtained at study entry and following each supplementation period. There was no significant treatment effect of cranberry juice supplementation on the primary endpoint of central systolic blood pressure or central or brachial diastolic pressure. Cranberry juice significantly reduced 24-h diastolic ambulatory BP by ~2 mm Hg compared to the placebo (p = 0.05) during daytime hours. Cranberry juice supplementation did not alter LDL-C but significantly changed the composition of the lipoprotein profile compared to the placebo, increasing the concentration of large LDL-C particles (+29.5 vs. −6.7 nmol/L; p = 0.02) and LDL size (+0.073 vs. −0.068 nm; p = 0.001). There was no effect of treatment on ex vivo HDL efflux in the total population, but exploratory subgroup analyses identified an interaction between BMI and global HDL efflux (p = 0.02), with greater effect of cranberry juice in participants who were overweight. Exploratory analyses indicate that baseline C-reactive protein (CRP) values may moderate treatment effects. In this population of adults with elevated blood pressure, cranberry juice supplementation had no significant effect on central systolic blood pressure but did have modest effects on 24-h diastolic ambulatory BP and the lipoprotein profile. Future studies are needed to verify these findings and the results of our exploratory analyses related to baseline health moderators.
Collapse
Affiliation(s)
- Chesney K. Richter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85716, USA; (C.K.R.); (A.C.S.-R.)
| | - Ann C. Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85716, USA; (C.K.R.); (A.C.S.-R.)
| | - Trent L. Gaugler
- Department of Mathematics, Lafayette College, Easton, PA 18042, USA;
| | - Stacey Meily
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
- Correspondence:
| |
Collapse
|
31
|
HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021; 10:cells10081869. [PMID: 34440638 PMCID: PMC8394469 DOI: 10.3390/cells10081869] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
For a long time, high-density lipoprotein cholesterol (HDL-C) has been regarded as a cardiovascular disease (CVD) protective factor. Recently, several epidemiological studies, while confirming low plasma levels of HDL-C as an established predictive biomarker for atherosclerotic CVD, indicated that not only people at the lowest levels but also those with high HDL-C levels are at increased risk of cardiovascular (CV) mortality. This “U-shaped” association has further fueled the discussion on the pathophysiological role of HDL in CVD. In fact, genetic studies, Mendelian randomization approaches, and clinical trials have challenged the notion of HDL-C levels being causally linked to CVD protection, independent of the cholesterol content in low-density lipoproteins (LDL-C). These findings have prompted a reconsideration of the biological functions of HDL that can be summarized with the word “HDL functionality”, a term that embraces the many reported biological activities beyond the so-called reverse cholesterol transport, to explain this lack of correlation between HDL levels and CVD. All these aspects are summarized and critically discussed in this review, in an attempt to provide a background scenario for the “HDL story”, a lipoprotein still in search of a role.
Collapse
|
32
|
Thakkar H, Vincent V, Sen A, Singh A, Roy A. Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. J Lipids 2021; 2021:5585521. [PMID: 33996157 PMCID: PMC8096543 DOI: 10.1155/2021/5585521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
High-density lipoprotein (HDL) comprises a heterogeneous group of particles differing in size, density, and composition. HDL cholesterol (HDL-C) levels have long been suggested to indicate cardiovascular risk, inferred from multiple epidemiological studies. The failure of HDL-C targeted interventions and genetic studies has raised doubts on the atheroprotective role of HDL-C. The current consensus is that HDL-C is neither a biomarker nor a causative agent of cardiovascular disorders. With better understanding of the complex nature of HDL which comprises a large number of proteins and lipids with unique functions, recent focus has shifted from HDL quantity to HDL quality in terms of atheroprotective functions. The current research is focused on developing laboratory assays to assess HDL functions for cardiovascular risk prediction. Also, HDL mimetics designed based on the key determinants of HDL functions are being investigated to modify cardiovascular risk. Improving HDL functions by altering its composition is the key area of future research in HDL biology to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
33
|
Luna-Castillo KP, Lin S, Muñoz-Valle JF, Vizmanos B, López-Quintero A, Márquez-Sandoval F. Functional Food and Bioactive Compounds on the Modulation of the Functionality of HDL-C: A Narrative Review. Nutrients 2021; 13:1165. [PMID: 33916032 PMCID: PMC8066338 DOI: 10.3390/nu13041165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a serious public health problem and are the primary cause of death worldwide. High-density lipoprotein cholesterol (HDL-C) has been identified as one of the most important molecules in the prevention of CVD due to its multiple anti-inflammatories, anti-atherogenic, and antioxidant properties. Currently, it has been observed that maintaining healthy levels of HDL-C does not seem to be sufficient if the functionality of this particle is not adequate. Modifications in the structure and composition of HDL-C lead to a pro-inflammatory, pro-oxidant, and dysfunctional version of the molecule. Various assays have evaluated some HDL-C functions on risk populations, but they were not the main objective in some of these. Functional foods and dietary compounds such as extra virgin olive oil, nuts, whole grains, legumes, fresh fish, quercetin, curcumin, ginger, resveratrol, and other polyphenols could increase HDL functionality by improving the cholesterol efflux capacity (CEC), paraoxonase 1 (PON1), and cholesteryl ester transfer protein (CETP) activity. Nevertheless, additional rigorous research basic and applied is required in order to better understand the association between diet and HDL functionality. This will enable the development of nutritional precision management guidelines for healthy HDL to reduce cardiovascular risk in adults. The aim of the study was to increase the understanding of dietary compounds (functional foods and bioactive components) on the functionality of HDL.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
| | - Sophia Lin
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
34
|
Yubero-Serrano EM, Alcalá-Diaz JF, Gutierrez-Mariscal FM, Arenas-de Larriva AP, Peña-Orihuela PJ, Blanco-Rojo R, Martinez-Botas J, Torres-Peña JD, Perez-Martinez P, Ordovas JM, Delgado-Lista J, Gómez-Coronado D, Lopez-Miranda J. Association between cholesterol efflux capacity and peripheral artery disease in coronary heart disease patients with and without type 2 diabetes: from the CORDIOPREV study. Cardiovasc Diabetol 2021; 20:72. [PMID: 33766036 PMCID: PMC7993540 DOI: 10.1186/s12933-021-01260-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral artery disease (PAD) is recognized as a significant predictor of mortality and adverse cardiovascular outcomes in patients with coronary heart disease (CHD). In fact, coexisting PAD and CHD is strongly associated with a greater coronary event recurrence compared with either one of them alone. High-density lipoprotein (HDL)-mediated cholesterol efflux capacity (CEC) is found to be inversely associated with an increased risk of incident CHD. However, this association is not established in patients with PAD in the context of secondary prevention. In this sense, our main aim was to evaluate the association between CEC and PAD in patients with CHD and whether the concurrent presence of PAD and T2DM influences this association. Methods CHD patients (n = 1002) from the CORDIOPREV study were classified according to the presence or absence of PAD (ankle-brachial index, ABI ≤ 0.9 and ABI > 0.9 and < 1.4, respectively) and T2DM status. CEC was quantified by incubation of cholesterol-loaded THP-1 cells with the participants' apoB-depleted plasma was performed. Results The presence of PAD determined low CEC in non-T2DM and newly-diagnosed T2DM patients. Coexisting PAD and newly-diagnosed T2DM provided and additive effect providing an impaired CEC compared to non-T2DM patients with PAD. In established T2DM patients, the presence of PAD did not determine differences in CEC, compared to those without PAD, which may be restored by glucose-lowering treatment. Conclusions Our findings suggest an inverse relationship between CEC and PAD in CHD patients. These results support the importance of identifying underlying mechanisms of PAD, in the context of secondary prevention, that provide potential therapeutic targets, that is the case of CEC, and establishing strategies to prevent or reduce the high risk of cardiovascular events of these patients. Trial registrationhttps://clinicaltrials.gov/ct2/show/NCT00924937. Unique Identifier: NCT00924937![]()
Collapse
Affiliation(s)
- Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Juan F Alcalá-Diaz
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Patricia J Peña-Orihuela
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruth Blanco-Rojo
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Javier Martinez-Botas
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jose M Ordovas
- Jean Mayer US Department of Agriculture Human Nutrition Research Center On Aging, Tufts University School of Medicine, Boston, MA, USA.,IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Diego Gómez-Coronado
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
35
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
36
|
Abdollahi S, Kazemi A, de Souza RJ, Clark CCT, Soltani S. The effect of meal frequency on biochemical cardiometabolic factors: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2021; 40:3170-3181. [PMID: 33485709 DOI: 10.1016/j.clnu.2020.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although several randomized controlled trials (RCTs) have supported the beneficial effects of higher meal frequency (MF) on cardiometabolic risk factors, the putative effects of higher MF on health remain inconclusive. This study systematically reviewed the evidence from RCTs of the effect of higher compared with lower MF on the blood lipid profile, glucose homeostasis, and adipokines. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane database were searched up to October 2020 to retrieve relevant RCTs. A DerSimonian and Laird random effects model was used to pool mean differences and 95% CI for each outcome. The quality of studies and evidence was assessed through standard methods. RESULTS Twenty-one RCTs (686 participants) were included in this meta-analysis. Overall results showed a significant improvement in total cholesterol [weighted mean difference (WMD) = -6.08 mg/dl; 95% CI: -10.68, -1.48; P = 0.01; I2 = 88%], and low-density cholesterol (LDL-C) (WMD = -6.82 mg/dl; 95% CI: -10.97, -1.60; P = 0.009; I2 = 85.7%), while LDL-C to high-density cholesterol ratio (LDL-C: HDL-C) increased (WMD = 0.22; 95% CI: 0.07, 0.36; P = 0.003; I2 = 0.0%) in higher MF vs. lower MF. No significant effects were found on measures of glycemic control, apolipoproteins-A1 and B, or leptin. In subgroup analyses, higher MF significantly reduced serum triglyceride (TG), and increased HDL-C, compared with lower MF in interventions > 12 weeks, and decreased serum TC and LDL-C in healthy participants. A significant reduction in LDL-C also was observed in studies where the same foods given both arms, simply divided into different feeding occasions, and in feeding studies, following higher MF compared to lower MF. CONCLUSION Our meta-analysis found that higher, compared with lower MF may improve total cholesterol, and LDL-C. The intervention does not affect measures of glycemic control, apolipoproteins-A1 and B, or leptin. However, the GRADE ratings of low credibility of the currently available evidence highlights the need for more high-quality studies in order to reach a firm conclusion.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Population Health Research Centre, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
37
|
Fras Z, Tršan J, Banach M. On the present and future role of Lp-PLA 2 in atherosclerosis-related cardiovascular risk prediction and management. Arch Med Sci 2021; 17:954-964. [PMID: 34336025 PMCID: PMC8314407 DOI: 10.5114/aoms.2020.98195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
Circulating concentration and activity of secretory phospholipase A2 (sPLA2) and lipoprotein-associated phospholipase A2 (Lp-PLA2) have been proven as biomarkers of increased risk of atherosclerosis-related cardiovascular disease (ASCVD). Lp-PLA2 might be part of the atherosclerotic process and may contribute to plaque destabilisation through inflammatory activity within atherosclerotic lesions. However, all attempts to translate the inhibition of phospholipase into clinically beneficial ASCVD risk reduction, including in randomised studies, by either non-specific inhibition of sPLA2 (by varespladib) or specific Lp-PLA2 inhibition by darapladib, unexpectedly failed. This gives us a strong imperative to continue research aimed at a better understanding of how Lp-PLA2 and sPLA2 regulate vascular inflammation and atherosclerotic plaque development. From the clinical viewpoint there is a need to establish and validate the existing and emerging novel anti-inflammatory therapeutic strategies to fight against ASCVD development, by using potentially better animal models and differently designed clinical trials in humans.
Collapse
Affiliation(s)
- Zlatko Fras
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Tršan
- Centre for Preventive Cardiology, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
38
|
Wallimann-Annema W. [The Current Significance of Measuring HDL-Cholesterol in Cardiovascular Risk Assessment]. PRAXIS 2021; 110:383-390. [PMID: 34019448 DOI: 10.1024/1661-8157/a003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Current Significance of Measuring HDL-Cholesterol in Cardiovascular Risk Assessment Abstract. In clinical practice, high-density lipoprotein cholesterol (HDL-C) levels are frequently used for cardiovascular risk prediction. HDL particles perform numerous functions that theoretically protect against atherosclerosis. Accordingly, extensive studies have clearly demonstrated that low HDL-C is an important independent risk factor for cardiovascular diseases. However, it is now considered questionable whether very high HDL-C levels are always cardioprotective. This may be explained by the structural heterogeneity of HDL particles and the loss of HDL protective functions in the context of disease, which cannot be detected by the simple measurement of HDL-C. In the future new markers of the functional capacity of HDL particles may replace HDL-C as a traditional parameter for cardiovascular risk assessment.
Collapse
|
39
|
Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115:73. [PMID: 33258000 PMCID: PMC7704510 DOI: 10.1007/s00395-020-00829-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting.
Collapse
MESH Headings
- Animals
- Aortic Diseases/complications
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Coronary Artery Disease/complications
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Diet, High-Fat
- Disease Models, Animal
- Genetic Predisposition to Disease
- Mice, Knockout, ApoE
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Species Specificity
Collapse
Affiliation(s)
- Pelin Golforoush
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
40
|
van Rooijen MA, Plat J, Blom WAM, Zock PL, Mensink RP. Dietary stearic acid and palmitic acid do not differently affect ABCA1-mediated cholesterol efflux capacity in healthy men and postmenopausal women: A randomized controlled trial. Clin Nutr 2020; 40:804-811. [PMID: 32900520 DOI: 10.1016/j.clnu.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/23/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The saturated fatty acid stearic acid (C18:0) lowers HDL cholesterol compared with palmitic acid (C16:0). However, the ability of HDL particles to promote cholesterol efflux from macrophages (cholesterol efflux capacity; CEC) may better predict coronary heart disease (CHD) risk than HDL cholesterol concentrations. OBJECTIVE We examined effects of exchanging dietary palmitic acid for stearic acid on ATP-binding cassette transporter A1 (ABCA1)-mediated CEC, and other conventional and emerging cardiometabolic risk makers. DESIGN In a double-blind, randomized, crossover study with two 4-week isocaloric intervention periods, 34 healthy men and postmenopausal women (61.5 ± 5.7 years, BMI: 25.4 ± 2.5 kg/m2) followed diets rich in palmitic acids or stearic acids. Difference in intakes was 6% of daily energy. ABCA1-mediated CEC was measured from J774 macrophages to apolipoprotein (apo)B-depleted serum. RESULTS Compared with the palmitic-acid diet, the stearic-acid diet lowered serum LDL cholesterol (-0.14 mmol/L; p = 0.010), HDL cholesterol (-0.09 mmol/L; p=<0.001), and apoA1 (-0.05 g/L; p < 0.001). ABCA1-mediated CEC did not differ between diets (p = 0.280). Cholesteryl ester transfer protein (CETP) mass was higher on stearic acid (0.11 mg/L; p = 0.003), but CETP activity was comparable. ApoB100 did not differ, but triacylglycerol concentrations tended to be higher on stearic acid (p = 0.100). Glucose concentrations were comparable. Effects on insulin and C-peptide were sex-dependent. In women, the stearic-acid diet increased insulin concentrations (1.57 μU/mL; p = 0.002), while in men, C-peptide concentrations were lower (-0.15 ng/mL; p = 0.037). Interleukin 6 (0.15 pg/mL; p = 0.039) and tumor necrosis factor alpha (0.18 pg/mL; p = 0.005), but not high-sensitivity C-reactive protein, were higher on stearic acid. Soluble intracellular adhesion molecule (9 ng/mL; p = 0.033), but not soluble vascular cell adhesion molecule and endothelial-selectin concentrations decreased after stearic-acid consumption. CONCLUSIONS As expected, stearic-acid intake lowered LDL cholesterol, HDL cholesterol, and apoA1. Insulin sensitivity in women and low-grade inflammation might be unfavorably affected by stearic-acid intake. However, palmitic-acid and stearic-acid intakes did not differently affect ABCA1-mediated CEC. CLINICAL TRIAL REGISTRY This trial was registered at clinicaltrials.gov as NCT02835651.
Collapse
Affiliation(s)
- Merel A van Rooijen
- Department of Nutrition and Movement Sciences, NUTRIM (School of Nutrition and Translational Research in Metabolism), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM (School of Nutrition and Translational Research in Metabolism), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Wendy A M Blom
- Unilever Research and Development, Vlaardingen, the Netherlands
| | - Peter L Zock
- Unilever Research and Development, Vlaardingen, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM (School of Nutrition and Translational Research in Metabolism), Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Yamatani K, Hirayama S, Seino U, Hirayama A, Hori A, Suzuki K, Idei M, Kitahara M, Miida T. Preβ1-high-density lipoprotein metabolism is delayed in patients with chronic kidney disease not on hemodialysis. J Clin Lipidol 2020; 14:730-739. [PMID: 32868248 DOI: 10.1016/j.jacl.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Preβ1-high-density lipoprotein (HDL) is a lipid-poor cholesterol acceptor that is converted to lipid-rich HDL by lecithin-cholesterol acyltransferase (LCAT). In patients receiving hemodialysis, preβ1-HDL metabolism is hampered even if HDL cholesterol is normal. Hemodialysis may affect preβ1-HDL metabolism by releasing lipases from the vascular wall due to heparin. OBJECTIVES We investigated whether preβ1-HDL metabolism is delayed in patients with chronic kidney disease (CKD) who are not receiving hemodialysis. METHODS We examined 44 patients with Stage 3 or higher CKD and 22 healthy volunteers (Control group). The patients with CKD were divided into those without renal replacement therapy (CKD group, n = 22) and those undergoing continuous ambulatory peritoneal dialysis (CAPD group, n = 22). Plasma preβ1-HDL concentrations were determined by immunoassay. During incubation at 37°C, we used 5,5-dithio-bis (2-nitrobenzoic acid) (DTNB) to inhibit LCAT activity and defined the conversion halftime of preβ1-HDL (CHTpreβ1) as the time required for the difference in preβ1-HDL concentration in the presence and absence of 5,5-DTNB to reach half the baseline concentration. RESULTS The absolute and relative preβ1-HDL concentrations were higher, and CHTpreβ1 was longer in the CKD and CAPD groups than in the Control group. Preβ1-HDL concentration was significantly correlated with CHTpreβ1 but not with LCAT activity in patients with CKD and CAPD. CONCLUSION Preβ1-HDL metabolism is delayed in patients with CKD who are not on hemodialysis. This preβ1-HDL metabolic delay may progress as renal function declines.
Collapse
Affiliation(s)
- Kotoko Yamatani
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Utako Seino
- Pathology Laboratory, Shinraku-en Hospital, Niigata, Niigata, Japan
| | - Akiko Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koya Suzuki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mayumi Idei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masaki Kitahara
- The Sulphuric Acid Association of Japan, Minato-ku, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
42
|
Pappa E, Elisaf MS, Kostara C, Bairaktari E, Tsimihodimos VK. Cardioprotective Properties of HDL: Structural and Functional Considerations. Curr Med Chem 2020; 27:2964-2978. [PMID: 30714519 DOI: 10.2174/0929867326666190201142321] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND As Mendelian Randomization (MR) studies showed no effect of variants altering HDL-cholesterol (HDL-C) levels concerning Cardiovascular Disease (CVD) and novel therapeutic interventions aiming to raise HDL-C resulted to futility, the usefulness of HDL-C is unclear. OBJECTIVE As the role of HDL-C is currently doubtful, it is suggested that the atheroprotective functions of HDLs can be attributed to the number of HDL particles, and their characteristics including their lipid and protein components. Scientific interest has focused on HDL function and on the causes of rendering HDL particles dysfunctional, whereas the relevance of HDL subclasses with CVD remains controversial. METHODS The present review discusses changes in quality as much as in quantity of HDL in pathological conditions and the connection between HDL particle concentration and cardiovascular disease and mortality. Emphasis is given to the recently available data concerning the cholesterol efflux capacity and the parameters that determine HDL functionality, as well as to recent investigations concerning the associations of HDL subclasses with cardiovascular mortality. RESULTS MR studies or pharmacological interventions targeting HDL-C are not in favor of the hypothesis of HDL-C levels and the relationship with CVD. The search of biomarkers that relate with HDL functionality is needed. Similarly, HDL particle size and number exhibit controversial data in the context of CVD and further studies are needed. CONCLUSION There is no room for the old concept of HDL as a silver bullet,as HDL-C cannot be considered a robust marker and does not reflect the importance of HDL particle size and number. Elucidation of the complex HDL system, as well as the finding of biomarkers, will allow the development of any HDL-targeted therapy.
Collapse
Affiliation(s)
- Eleni Pappa
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Christina Kostara
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
43
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
44
|
Jomard A, Osto E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med 2020; 7:39. [PMID: 32296714 PMCID: PMC7136892 DOI: 10.3389/fcvm.2020.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,” beneficial to the whole body and, in particular, to cardio-vascular health. However, HDLs are complex particles that undergoes dynamic remodeling through interactions with various enzymes and tissues throughout their life cycle, making the complete understanding of its functions and roles more complicated than initially expected. In this review, we explore the novel understanding of HDLs' behavior in health and disease as a multifaceted class of lipoprotein, with different size subclasses, molecular composition, receptor interactions, and functionality. Further, we report on emergent HDL-based therapeutics tested in small and larger scale clinical trials and their mixed successes.
Collapse
Affiliation(s)
- Anne Jomard
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Bowman E, Funderburg NT. Lipidome Abnormalities and Cardiovascular Disease Risk in HIV Infection. Curr HIV/AIDS Rep 2020; 16:214-223. [PMID: 30993515 DOI: 10.1007/s11904-019-00442-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Human immunodeficiency virus (HIV) infection and its treatment with antiretroviral therapy (ART) are associated with lipid abnormalities that may enhance cardiovascular disease risk (CVD). RECENT FINDINGS Chronic inflammation persists in HIV+ individuals, and complex relationships exist among lipids and inflammation, as immune activation may be both a cause and a consequence of lipid abnormalities in HIV infection. Advances in mass spectrometry-based techniques now allow for detailed measurements of individual lipid species; improved lipid measurement might better evaluate CVD risk compared with the prognostic value of traditional assessments. Lipidomic analyses have begun to characterize dynamic changes in lipid composition during HIV infection and following treatment with ART, and further investigation may identify novel lipid biomarkers predictive of adverse outcomes. Developing strategies to improve management of comorbidities in the HIV+ population is important, and statin therapy and lifestyle modifications, including diet and exercise, may help to improve lipid levels and mitigate CVD risk.
Collapse
Affiliation(s)
- Emily Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University College of Medicine, 453 W. 10th Ave. 535A Atwell Hall, Columbus, OH, 43210, USA
| | - Nicholas T Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University College of Medicine, 453 W. 10th Ave. 535A Atwell Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Lemes RMR, Silva CADME, Marques MÂDM, Atella GC, Nery JADC, Nogueira MRS, Rosa PS, Soares CT, De P, Chatterjee D, Pessolani MCV, de Macedo CS. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl Trop Dis 2020; 14:e0008138. [PMID: 32226013 PMCID: PMC7145193 DOI: 10.1371/journal.pntd.0008138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/09/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Robertha Mariana R. Lemes
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adriano de M. e Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Ângela de M. Marques
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Georgia C. Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto da C. Nery
- Ambulatório Souza Araújo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Cristina V. Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiana S. de Macedo
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
48
|
Soria-Florido MT, Castañer O, Lassale C, Estruch R, Salas-Salvadó J, Martínez-González MÁ, Corella D, Ros E, Arós F, Elosua R, Lapetra J, Fiol M, Alonso-Gómez A, Gómez-Gracia E, Serra-Majem L, Pintó X, Bulló M, Ruiz-Canela M, Sorlí JV, Hernáez Á, Fitó M. Dysfunctional High-Density Lipoproteins Are Associated With a Greater Incidence of Acute Coronary Syndrome in a Population at High Cardiovascular Risk: A Nested Case-Control Study. Circulation 2020; 141:444-453. [PMID: 31941372 DOI: 10.1161/circulationaha.119.041658] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies have failed to establish a clear link between high-density lipoprotein (HDL) cholesterol and cardiovascular disease, leading to the hypothesis that the atheroprotective role of HDL lies in its biological activity rather than in its cholesterol content. However, to date, the association between HDL functional characteristics and acute coronary syndrome has not been investigated comprehensively. METHODS We conducted a case-control study nested within the PREDIMED (Prevención con Dieta Mediterránea) cohort, originally a randomized trial in which participants followed a Mediterranean or low-fat diet. Incident acute coronary syndrome cases (N=167) were individually matched (1:2) to control patients by sex, age, intervention group, body mass index, and follow-up time. We investigated 2 individual manifestations (myocardial infarction, unstable angina) as secondary outcomes. We measured the following functional characteristics: HDL cholesterol concentration (in plasma); cholesterol efflux capacity; antioxidant ability, measured by the HDL oxidative-inflammatory index; phospholipase A2 activity; and sphingosine-1-phosphate, apolipoproteins A-I and A-IV, serum amyloid A, and complement 3 protein (in apolipoprotein B-depleted plasma). We used conditional logistic regression models adjusted for HDL cholesterol levels and cardiovascular risk factors to estimate odds ratios (ORs) between 1-SD increments in HDL functional characteristics and clinical outcomes. RESULTS Low values of cholesterol efflux capacity (OR1SD, 0.58; 95% CI, 0.40-0.83) and low levels of sphingosine-1-phosphate (OR1SD, 0.70; 95% CI, 0.52-0.92) and apolipoprotein A-I (OR1SD, 0.58; 95% CI, 0.42-0.79) were associated with higher odds of acute coronary syndrome. Higher HDL oxidative inflammatory index values were marginally linked to acute coronary syndrome risk (OR1SD, 1.27; 95% CI, 0.99-1.63). Low values of cholesterol efflux capacity (OR1SD, 0.33; 95% CI, 0.18-0.61), sphingosine-1-phosphate (OR1SD: 0.60; 95% CI: 0.40-0.89), and apolipoprotein A-I (OR1SD, 0.59; 95% CI, 0.37-0.93) were particularly linked to myocardial infarction, whereas high HDL oxidative-inflammatory index values (OR1SD, 1.53; 95% CI, 1.01-2.33) and low apolipoprotein A-I levels (OR1SD, 0.52; 95% CI, 0.31-0.88) were associated with unstable angina. CONCLUSIONS Low cholesterol efflux capacity values, pro-oxidant/proinflammatory HDL particles, and low HDL levels of sphingosine-1-phosphate and apolipoprotein A-I were associated with increased odds of acute coronary syndrome and its manifestations in individuals at high cardiovascular risk. CLINICAL TRIAL REGISTRATION URL: https://www.controlled-trials.com/ISRCTN35739639. Unique identifier: ISRCTN35739639.
Collapse
Affiliation(s)
- María Trinidad Soria-Florido
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,Universitat de Barcelona, Spain (M.T.S.-F.)
| | - Olga Castañer
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| | - Camille Lassale
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó)
| | - Ramon Estruch
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Clínic, Barcelona, Spain (R. Estruch, E.R.).,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (R. Estruch, A.H.)
| | - Jordi Salas-Salvadó
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universitat Rovira i Virgili, Reus, Spain (J.S.-S., M.B.).,Hospital Universitari Sant Joan, Reus, Spain (J.S.-S., M.B.).,Pere Virgili Institute (IISPV), Reus, Spain (J.S.-S., M.B.)
| | - Miguel Ángel Martínez-González
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Navarra, Pamplona, Spain (M.Á.M.-G., M.R.-C.).,Harvard TH Chan School of Public Health, Boston, MA (M.Á.M.-G.)
| | - Dolores Corella
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Valencia, Spain (D.C., J.V.S.)
| | - Emilio Ros
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| | - Fernando Arós
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Álava, Vitoria, Spain (F.A., A.A.G.)
| | - Roberto Elosua
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (R. Elosua)
| | - José Lapetra
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Distrito Sanitario Atención Primaria Sevilla, Spain (J.L.)
| | - Miquel Fiol
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Balearic Islands Health Research Institute, Hospital Son Espases, Palma de Mallorca, Spain (M.Fiol)
| | - Angel Alonso-Gómez
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Álava, Vitoria, Spain (F.A., A.A.G.)
| | - Enrique Gómez-Gracia
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Málaga, Spain (E.G.-G.)
| | - Lluís Serra-Majem
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain (L.S.-M.)
| | - Xavier Pintó
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain (X.P.)
| | - Mònica Bulló
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universitat Rovira i Virgili, Reus, Spain (J.S.-S., M.B.).,Hospital Universitari Sant Joan, Reus, Spain (J.S.-S., M.B.).,Pere Virgili Institute (IISPV), Reus, Spain (J.S.-S., M.B.)
| | - Miguel Ruiz-Canela
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Navarra, Pamplona, Spain (M.Á.M.-G., M.R.-C.)
| | - Jose V Sorlí
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Valencia, Spain (D.C., J.V.S.)
| | - Álvaro Hernáez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (R. Estruch, A.H.)
| | - Montserrat Fitó
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The inverse association between plasma high-density lipoprotein cholesterol (HDL-C) concentration and the incidence of cardiovascular disease (CVD) has been unequivocally proven by many epidemiological studies. There are several genetic disorders affecting HDL-C plasma levels, either providing atheroprotection or predisposing to premature atherosclerosis. However, up to date, there has not been any pharmacological intervention modulating HDL-C levels, which has been clearly shown to prevent the progression of CVD. Thus, clarifying the exact underlying mechanisms of inheritance of these genetic disorders that affect HDL is a current goal of the research, as key roles of molecular components of HDL metabolism and function can be revealed and become targets for the discovery of novel medications for the prevention and treatment of CVD. RECENT FINDINGS Primary genetic disorders of HDL can be either associated with longevity or, in contrast, may lead to premature CVD, causing high morbidity and mortality to their carriers. A large body of recent research has closely examined the genetic disorders of HDL and new promising therapeutic strategies have been developed, which may be proven beneficial in patients predisposed to CVD in the near future. SUMMARY We have reviewed recent findings on the inheritance of genetic disorders associated with high and low HDL-C plasma levels and we have discussed their clinical features, as well as information about new promising HDL-C-targeted therapies that are under clinical trials.
Collapse
Affiliation(s)
| | - Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
50
|
Kuusisto S, Holmes MV, Ohukainen P, Kangas AJ, Karsikas M, Tiainen M, Perola M, Salomaa V, Kettunen J, Ala-Korpela M. Direct Estimation of HDL-Mediated Cholesterol Efflux Capacity from Serum. Clin Chem 2019; 65:1042-1050. [PMID: 30996052 DOI: 10.1373/clinchem.2018.299222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND HDL-mediated cholesterol efflux capacity (HDL-CEC) is a functional attribute that may have a protective role in atherogenesis. However, the estimation of HDL-CEC is based on in vitro cell assays that are laborious and hamper large-scale phenotyping. METHODS Here, we present a cost-effective high-throughput nuclear magnetic resonance (NMR) spectroscopy method to estimate HDL-CEC directly from serum. We applied the new method in a population-based study of 7603 individuals including 574 who developed incident coronary heart disease (CHD) during 15 years of follow-up, making this the largest quantitative study for HDL-CEC. RESULTS As estimated by NMR-spectroscopy, a 1-SD higher HDL-CEC was associated with a lower risk of incident CHD (hazards ratio, 0.86; 95%CI, 0.79-0.93, adjusted for traditional risk factors and HDL-C). These findings are consistent with published associations based on in vitro cell assays. CONCLUSIONS These corroborative large-scale findings provide further support for a potential protective role of HDL-CEC in CHD and substantiate this new method and its future applications.
Collapse
Affiliation(s)
- Sanna Kuusisto
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | | | - Mari Karsikas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | | | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland; .,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| |
Collapse
|