1
|
Tariq M, Ahmad N, Nisa MU, Rahim MA, Zongo E. Phytochemicals profiling of Cassia fistula fruit extract and its effect on serum lipids and hematological parameters in high-fat diet-induced hyperlipidemic female rats. Food Sci Nutr 2024; 12:5776-5784. [PMID: 39139970 PMCID: PMC11317677 DOI: 10.1002/fsn3.4229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 08/15/2024] Open
Abstract
Cassia fistula (C. fistula) has shown strong anti-inflammatory, hepatoprotective, antitussive, antibacterial, and antifungal properties and is being used for healing wounds and gastrointestinal illness. This study was planned to obtain fruit extract from C. fistula using ultrasonic-assisted extraction (UAE) technique and evaluated for phytochemical contents, anti-hyperlipidemia, and hematological parameters. The results showed that total phenolic (TPC), total flavonoids (TFC), condensed tannin (CT), and saponins were 13.07 mg GAE/g, 5.24 mg QE/g, 4.01 mg/g, and 27.55%, respectively, in the extract. Proximate composition of the extract showed 2.48%, moisture, 1.25% fat, 2.80% ash, 4.59% fiber, 11.93% protein, and 76.95% NFE. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP) activity was 63.30 μg/mL and 15.02 nmol/g, respectively. High-fat diet (HFD)-induced hyperlipidemic rats were orally administrated with 0.5 and 1.0 g of extract/kg body weight (bw) daily. The reduction of total cholesterol (TC: 90.83 ± 8.86 mg/dL), triglycerides (TG; 74.16 ± 9.10 mg/dL), and low-density lipoproteins (LDL; 74.83 ± 4.66 mg/dL) and increase of high-density lipoproteins (HDL; 41.83 ± 8.4 mg/dL) was observed. Significant changes in red blood cells (RBCs; 8.03 ± 0.67106/μL), mean corpuscular hemoglobin concentration (MCHC; 35.02 ± 1.78 g/dL), mean corpuscular hemoglobin (MCH; 18.00 ± 0.26 pg), and mean corpuscular volume (MCV; 55.36 ± 4.01 fL) at 1.0 g extract intake was observed. Extract administration also improved significantly liver enzymes, body weight, and liver morphology. Therefore, C. fistula extract can be effectively used as a therapeutic agent to improve serum biochemistry and hematological values.
Collapse
Affiliation(s)
- Maryam Tariq
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Nazir Ahmad
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mahr Un Nisa
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies AnimalesUniversité Nazi BONIBobo DioulassoBurkina Faso
| |
Collapse
|
2
|
Tang M, Zhao J, Wu Y, Yu C, Peng C, Liu H, Cui Y, Lan W, Lin Y, Kong X, Xiong X. Improving gut functions and egg nutrition with stevia residue in laying hens. Poult Sci 2024; 103:103324. [PMID: 38141275 PMCID: PMC10784312 DOI: 10.1016/j.psj.2023.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023] Open
Abstract
This study aimed to investigate the effect of stevia residue (STER) on the production performance, egg quality and nutrition, antioxidant ability, immune responses, gut morphology and microbiota of laying hens during the peak laying period. A total of 270 Yikoujingfen NO. 8 laying hens (35 wk of age) were randomly divided into 5 treatments. The control group fed a basal diet and groups supplemented with 2, 4, 6, and 8% STER. The results showed that STER significantly increased egg production, the content of amino acids (alanine, proline, valine, ornithine, asparagine, aspartic acid, and cysteine) in egg whites, and decreased the yolk color (P < 0.05). Additionally, STER significantly increased acetate, HOMOγ linolenic acid and cis-13, 16-docosadienoic acid levels in egg yolk (P < 0.05). IL-2, IL-4, and IL-10 levels in serum significantly increased by STER (P < 0.05), while IL-1β significantly decreased (P < 0.05). STER also increased total antioxidant activity (T-AOC) in the liver and estradiol level in the oviduct (P < 0.05), but decreased the cortisol level in the oviduct (P < 0.05). For the intestinal morphology, the jejunal villus height and crypt-to-villus (V:C) significantly increased by STER (P < 0.05). STER increased the relative abundance of Actinobacteriota (P < 0.05), while deceased Proteobacteria, Desulfobacterota, and Synergistota (P < 0.05). In conclusion, STER improved egg production, quality and nutrition, improved the immune responses, antioxidant capabilities, estrogen level, gut morphology, and increased the relative abundance of beneficial bacteria while decreased the harmful bacteria. Among all treatments, 4 and 6% STER supplementation yielded the most favorable results in terms of enhancing production performance, egg nutrition, gut health, and immune capabilities in laying hens.
Collapse
Affiliation(s)
- Mengxuan Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu 61004, China
| | - Yuliang Wu
- Hunan Normal University, Changsha 410081, China
| | - Chu Yu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Can Peng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hongnan Liu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Yong Lin
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Tsai MJ, Li CH, Wu HT, Kuo HY, Wang CT, Pai HL, Chang CJ, Ou HY. Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients 2023; 15:2814. [PMID: 37375718 DOI: 10.3390/nu15122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Sugar substitutes have been recommended to be used for weight and glycemic control. However, numerous studies indicate that consumption of artificial sweeteners exerts adverse effects on glycemic homeostasis. Although sucralose is among the most extensively utilized sweeteners in food products, the effects and detailed mechanisms of sucralose on insulin sensitivity remain ambiguous. In this study, we found that bolus administration of sucralose by oral gavage enhanced insulin secretion to decrease plasma glucose levels in mice. In addition, mice were randomly allocated into three groups, chow diet, high-fat diet (HFD), and HFD supplemented with sucralose (HFSUC), to investigate the effects of long-term consumption of sucralose on glucose homeostasis. In contrast to the effects of sucralose with bolus administration, the supplement of sucralose augmented HFD-induced insulin resistance and glucose intolerance, determined by glucose and insulin tolerance tests. In addition, we found that administration of extracellular signal-regulated kinase (ERK)-1/2 inhibitor reversed the effects of sucralose on glucose intolerance and insulin resistance in mice. Moreover, blockade of taste receptor type 1 member 3 (T1R3) by lactisole or pretreatment of endoplasmic reticulum stress inhibitors diminished sucralose-induced insulin resistance in HepG2 cells. Taken together, sucralose augmented HFD-induced insulin resistance in mice, and interrupted insulin signals through a T1R3-ERK1/2-dependent pathway in the liver.
Collapse
Affiliation(s)
- Meng-Jie Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Teng Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Pai
- Graduated Institute of Metabolism and Obesity Science, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Park M, Sharma A, Baek H, Han JY, Yu J, Lee HJ. Stevia and Stevioside Attenuate Liver Steatosis through PPARα-Mediated Lipophagy in db/db Mice Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122496. [PMID: 36552704 PMCID: PMC9774531 DOI: 10.3390/antiox11122496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Lipophagy, a type of autophagy that breaks down lipid droplets, is essential in the regulation of intracellular lipid accumulation and intracellular free fatty acid levels in numerous organisms and metabolic conditions. We investigated the effects of Stevia rebaudiana Bertoni (S), a low-calorie sweetener, and stevioside (SS) on hepatic steatosis and autophagy in hepatocytes, as well as in db/db mice. S and SS reduced the body and liver weight and levels of serum triglyceride, total cholesterol, and hepatic lipogenic proteins. In addition, S and SS increased the levels of fatty acid oxidase, peroxisome proliferator-activated receptor alpha (PPARα), and microtubule-associated protein light chain 3 B but decreased that of sequestosome 1 (p62) in the liver of db/db mice. Additionally, Beclin 1, lysosomal associated membrane protein 1, and phosphorylated adenosine monophosphate-activated protein kinase protein expression was augmented following S and SS treatment of db/db mice. Furthermore, the knockdown of PPARα blocked lipophagy in response to SS treatment in HepG2 cells. These outcomes indicate that PPARα-dependent lipophagy is involved in hepatic steatosis in the db/db mouse model and that SS, a PPARα agonist, represents a new therapeutic option for managing associated diseases.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Hana Baek
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jin-Young Han
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Junho Yu
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Correspondence: or ; Tel.: +82-31-750-5968; Fax: +82-31-724-4411
| |
Collapse
|
5
|
Morales-Ríos EI, García-Machorro J, Briones-Aranda A, Gómez-Pliego R, Espinosa-Raya J. Effect of Long-term Intake of Nutritive and Non-nutritive Sweeteners on Metabolic Health and Cognition in Adult Male Rats. J Med Food 2022; 25:1059-1065. [PMID: 35951019 DOI: 10.1089/jmf.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study evaluated the effects of long-term intake of nutritive sweeteners (NSs) and non-nutritive sweeteners (NNSs) on body weight, food and energy intake, blood pressure, metabolic parameters, and memory retention in rats. Sixty male Sprague-Dawley rats were randomly divided into six groups (n = 10 per group): control (water),10% sucrose (SUC), aspartame (ASP), sucralose (SCA), stevia (STV), and 5% xylitol (XYL). Pure NSs (SUC and XYL) and NNSs were added to the drinking water for 18 weeks. ASP, SCA, and STV dosage was based on the estimated daily intake limit: 4.1, 2.0, and 3.4 mg/kg/day, respectively. Chronic access to NNSs did not result in any difference in total weight gain of the rats, while it was significantly elevated in the SUC group compared with the control and NNSs groups. Food intake was significantly lower in all NNSs groups compared with SUC and control groups. Sweetened beverage intake volumes were significantly diminished in all NNSs groups compared with intake in SUC and control groups. Total calories consumed were lower for the STV and XYL groups compared with all other groups. Blood pressure and glucose metabolism did not differ significantly between the groups. All sweeteners increased total cholesterol, low-density lipoprotein, and triglyceride levels. Short-term memory was significantly impaired in the ASP group in the novel object recognition task, while long-term memory was impaired in SUC and STV groups. These metabolic and behavioral results suggest that the long-term intake of NSs or NNSs can be associated with peripheral and central effects.
Collapse
Affiliation(s)
- Emmanuel Iván Morales-Ríos
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez Chiapas, México
| | - Raquel Gómez-Pliego
- Sección de Ciencias de la Salud Humana, Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México
| | - Judith Espinosa-Raya
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
6
|
Villegas Vílchez LF, Ascencios JH, Dooley TP. GlucoMedix®, an extract of Stevia rebaudiana and Uncaria tomentosa, reduces hyperglycemia, hyperlipidemia, and hypertension in rat models without toxicity: a treatment for metabolic syndrome. BMC Complement Med Ther 2022; 22:62. [PMID: 35260150 PMCID: PMC8905912 DOI: 10.1186/s12906-022-03538-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The objective of this in vivo study is to evaluate in five rat models the pharmacologic effects and toxicity of a commercial hydro-alcoholic extract, GlucoMedix®, derived from Stevia rebaudiana and the pentacyclic chemotype of Uncaria Tomentosa (Willd.) DC, for use as a treatment for metabolic syndrome. The extract contains phytochemicals of Stevia (e.g., steviol glycosides) and Uncaria (e.g., pentacyclic oxindole alkaloids, but lacks tetracyclic oxindole alkaloids). METHODS The pharmacologic assessments in three rat models include reductions in chemically induced hyperglycemia, hyperlipidemia (cholesterol and triglycerides), and hypertension, all of which are comorbidities of metabolic syndrome. Acute toxicity and 28-day subacute toxicity were assessed in rat models at doses higher than those used in the efficacy models. RESULTS The acute oral toxicity was evaluated in Holtzman rats and the extract did not produce acute toxic effects or lethality, with the LD50 > 5000 mg/kg (extract wet weight). Furthermore, subacute oral toxicity was evaluated in rats for 28 days at daily doses as high as 2000 mg/kg without toxicity or abnormal clinical chemistry or hematological effects. Daily oral doses of 250 - 1000 mg/kg were used to evaluate the treatment effects in hyperglycemic (alloxan-induced and glibenclamide-controlled), hyperlipidemic (cholesterol-induced and atorvastatin-controlled), and hypertensive (L-NAME-induced and enalapril-controlled) rat models. Alloxan-induced hyperglycemia was reduced in a dose-dependent manner within 28 days or less. Cholesterol-induced hyperlipidemic rats exhibited dose-dependent reductions in cholesterol and triglycerides at 21 days. Furthermore, GlucoMedix® produced a dose-dependent decrease in systolic and diastolic arterial blood pressure in L-NAME-induced hypertensive rats at 28 days. CONCLUSIONS The five in vivo rat models revealed that the all-natural phytotherapy GlucoMedix® is a safe and effective treatment for hyperglycemia, hyperlipidemia, and hypertension. This extract is expected to affect multiple comorbidities of metabolic syndrome, without any acute or subacute oral toxicity in humans. Although multiple prescription drugs are well known for the treatment of individual comorbidities of metabolic syndrome, no drug monotherapy concurrently treats all three comorbidities.
Collapse
Affiliation(s)
- León F Villegas Vílchez
- Department of Cellular and Molecular Sciences, Section of Pharmaceutical Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Quality Control Service, Research and Development Laboratories, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Julio Hidalgo Ascencios
- Quality Control Service, Research and Development Laboratories, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | |
Collapse
|
7
|
Morsi AA, A. Mersal E, Razik H. Farrag A, M. Abdelmoneim A, M. Abdelmenem A, S. Salim M. Histomorphological Changes in a Rat Model of Polycystic Ovary Syndrome and the Contribution of Stevia Leaf Extract in Modulating the Ovarian Fibrosis, VEGF, and TGF-β Immunoexpressions: Comparison with Metformin. Acta Histochem Cytochem 2022; 55:9-23. [PMID: 35444350 PMCID: PMC8913276 DOI: 10.1267/ahc.21-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of fertile females. It has been reported that stevia leaf extract (SLE) has antidiabetic and antihyperlipidemic properties. Therefore, the current study hypothesized and investigated the role and mechanistic aspects of a natural sweetener; SLE in treating a rat model of letrozole-induced PCOS and to compare it with metformin. Thirty-five female Wistar albino rats were divided into 5 groups: control, PCOS-induced group (letrozole, 1 mg/kg/d, for 21 days), SLE, metformin, and combination-treated groups (300 mg/kg/d, for the next 28 days in SLE and metformin-treated groups). Vaginal smears were done. The levels of glucose, lipid, and hormonal profiles were measured in the serum meanwhile, malonyl dialdehyde (MDA), superoxide dismutase (SOD), and tumour necrosis factor (TNF-α) were measured in the ovary. Ovarian sections were subjected to hematoxylin and eosin, Masson, and immunohistochemical identification of VEGF and TGF-β followed by morphometric analysis. PCOS rats showed altered hormonal and lipid profiles, in addition to hyperglycemia. Also, the ovarian tissue levels of MDA and TNF-α were elevated, and SOD was decreased. Numerous cystic follicles, decrease/absence of corpora lutea, interstitial fibrosis with positive VEGF and TGF-β immunoreactivity were evident. SLE improved all altered parameters. SLE showed potential therapeutic merits in letrozole-induced PCOS via anti-inflammatory, antioxidant, anti-fibrotic, and angiogenesis regulating mechanisms. Its effects were almost comparable to metformin, and the combination of both has no further synergistic effect.
Collapse
Affiliation(s)
- Ahmed A. Morsi
- Histology and Cell Biology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A. Mersal
- Biochemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Abdel Razik H. Farrag
- Department of Pathology, Medical Division Research, National Research Centre, Cairo 12622, Dokki, Egypt
| | | | - Alshaymaa M. Abdelmenem
- Histology and Cell Biology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed S. Salim
- Research & Development Sector, The Holding Company for Biological Products and Vaccines (VACSERA), 51 Wezaret El-Zeraa St., Agouza, 22311, Giza, Egypt
| |
Collapse
|
8
|
Stevia and Uncaria extract (GlucoMedix®) reduces glucose levels and the need for medications in type 2 diabetes: an open label case series of six patients. CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-021-00332-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
GlucoMedix® is an all-natural phytotherapy consisting of a hydro-alcoholic extract of Stevia rebaudiana (Bertoni) Bertoni and pentacyclic chemotype Uncaria tomentosa (Willd. Ex Schult.) DC. The nutraceutical product has potential for the treatment of hyperglycemia in type 2 diabetes and Metabolic Syndrome.
Methods
Six adult Hispanic type 2 diabetic patients were included in an outpatient retrospective open label physician-sponsored case series study. GlucoMedix® extract of Stevia plus pentacyclic chemotype Uncaria was administered orally at doses of 2 ml, diluted in water, two or three times daily. The patients’ blood glucose levels were recorded historically, at baseline, and thereafter while taking GlucoMedix® orally.
Results
When treated with GlucoMedix®, with or without coincident advice to modify diet, all six patients manifested reductions in blood glucose levels. At baseline four of the six patients were administering one or more prescription treatments for hyperglycemia, e.g., Glibenclamide, Metformin, Vildagliptin, or Insulin. Two patients displayed substantial reductions in glucose of 50 and 70 mg/dl, and in conjunction with the removal of their prior drug treatments of Glibenclamide plus Metformin or of Vildagliptin. An Insulin-treated patient experienced a 50 mg/dl reduction while ceasing Metformin and was subsequently able to reduce the dose of Insulin by half. Thus, in three patients GlucoMedix® abrogated in whole or in part the requirement for pharmaceutical or biologic therapies to achieve substantial beneficial reductions in glycemic levels.
Conclusions
In this proof-of-principle study oral GlucoMedix® was an effective treatment for hyperglycemia in type 2 diabetic individuals. This all-natural phytotherapy can be used beneficially in conjunction with existing pharmaceutical or biological therapy regimens, and in some cases can replace in whole or in part the requirement for pharmaceutical or biologic therapies. These in-life results suggest that this natural product approach can serve as an alternative to prescription monotherapies or multimodal therapies for the regulation of hyperglycemia.
Collapse
|
9
|
Ilias N, Hamzah H, Ismail IS, Mohidin TBM, Idris MF, Ajat M. An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomed Pharmacother 2021; 143:112207. [PMID: 34563950 DOI: 10.1016/j.biopha.2021.112207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.
Collapse
Affiliation(s)
- Nazhan Ilias
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Taznim Begam Mohd Mohidin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohd Faiz Idris
- Pusat Bahasa dan Pengajian Umum, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| |
Collapse
|
10
|
Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI JOURNAL 2021; 20:1412-1430. [PMID: 34803554 PMCID: PMC8600158 DOI: 10.17179/excli2021-4211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Stevia rebaudiana is a South American plant, the cultivation of which is increasing worldwide due to its high content of sweet compounds. Stevia sweetness is mainly due to steviol glycosides, that are ~250-300 times sweeter than sucrose. Many studies have suggested the benefits of Stevia extract over sugar and artificial sweeteners, but it is still not a very popular sugar substitute. This review summarizes current data on the biological activities of S. rebaudiana extract and its individual glycosides, including anti-hypertensive, anti-obesity, anti-diabetic, antioxidant, anti-cancer, anti-inflammatory, and antimicrobial effects and improvement of kidney function. Possible side effects and toxicity of Stevia extract are also discussed.
Collapse
Affiliation(s)
- Victoria Peteliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia Rybchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
- Research and Development University, Shota Rustaveli Str., 76000, Ivano-Frankivsk, Ukraine
| |
Collapse
|
11
|
Rey M, Kruse MS, Magrini-Huamán RN, Gómez J, Simirgiotis MJ, Tapia A, Feresin GE, Coirini H. Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) Decoction Improves the Hypercholesterolemia and Alters the Expression of LXRs in Rat Liver and Hypothalamus. Metabolites 2021; 11:579. [PMID: 34564396 PMCID: PMC8467473 DOI: 10.3390/metabo11090579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic high-fat diet consumption induces hypercholesterolemia. The effect of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) was studied on the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and triglycerides, and on the expression of liver X receptors (LXRs) in a hypercholesterolemic model. Adult male rats received a normal diet (ND) or a high-fat diet (HFD; normal diet + bovine fat + cholesterol). After 14 days, rats received water (W) or a decoction of the aerial parts of T. absinthioides (Ta; 10% w/v) for 2, 4, or 6 weeks. Four and six weeks of Ta improved the levels of TC and HDL-c in HFD. After 6 weeks of Ta, the expression of LXRs in HFD was the same as that in ND in both tissues. The Ta chemical profile was studied with an ultrahigh resolution liquid chromatography Orbitrap MS analysis (UHPLC-PDA-OT-MS/MS). Fifty-one compounds were identified, of which twelve are reported for the first time. Among these compounds, caffeoylquinic acid and its derivatives could modify the lipid profile and the expression of LXRs. This is the first in vivo report of T. absinthioides, which may be a potential candidate against hypercholesterolemia.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - María S Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - Rocío N Magrini-Huamán
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, San Juan 5400, Argentina
| | - Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| |
Collapse
|
12
|
Li Y, Zhu W, Cai J, Liu W, Akihisa T, Li W, Kikuchi T, Xu J, Feng F, Zhang J. The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders. Food Funct 2021; 12:8248-8259. [PMID: 34319319 DOI: 10.1039/d1fo01370j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM), characterized by abnormal carbohydrate, lipid, and protein metabolism, is a metabolic disorder caused by a shortage of insulin secretion or decreased sensitivity of target cells to insulin. In addition to changes in lifestyle, a low-calorie diet is recommended to reduce the development of DM. Steviol glycosides (SGs), as natural sweeteners, have gained attention as sucrose alternatives because of their advantages of high sweetness and being low calorie. Most SGs with multiple bioactivities are beneficial to regulate physiological functions. Though SGs have been widely applied in food industry, there is little data on their glucosylated derivatives that are glucosylated steviol glycosides (GSGs). In this review, we have discussed the metabolic fate of GSGs in contrast to SGs, and the molecular mechanisms of glycoside metabolites against diabetes-related metabolic disorders are also summarized. SGs are generally extracted from the Stevia leaf, while GSGs are mainly manufactured using enzymes that transfer glucose units from a starch source to SGs. Results from this study suggest that SGs and GSGs share same bioactive metabolites, steviol and steviol glucuronide (SVG), which exhibit anti-hyperglycemic effects by activating glucose-induced insulin secretion to enhance pancreatic β-cell function. In addition, steviol and SVG have been found to ameliorate the inflammatory response, lipid imbalance, myocardial fibrosis and renal functions to modulate diabetes-related metabolic disorders. Therefore, both SGs and GSGs may be used as potential sucrose alternatives and/or pharmacological alternatives for preventing and treating metabolic disorders.
Collapse
Affiliation(s)
- Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wanfang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| |
Collapse
|
13
|
Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Appl Microbiol Biotechnol 2021; 105:5367-5381. [PMID: 34196745 DOI: 10.1007/s00253-021-11419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
With the pursuit of natural non-calorie sweeteners, steviol glycosides (SGs) have become one of the most popular natural sweeteners in the market. The SGs in Stevia are a mixture of SGs synthesized from steviol (a terpenoid). SGs are diterpenoids. Different SGs depend on the number and position of sugar groups on the core steviol backbone. This diversity comes from the processing of glycoside steviol by various glycosyltransferases. Due to the differences in glycosylation, each SG has unique sensory properties. At present, it is more complicated to extract high-quality SGs from plants, so the excavation of the metabolic pathways of engineered microorganisms to synthesize SGs has been extensively studied. Specifically, the expression of different glycosyltransferases in microbes is key to the synthesis of various SGs by engineered microorganisms. To trigger more researches on the functional characterization of the enzymes encoded by these genes, this review describes the latest research progresses of the related enzymes involved in SG biosynthesis and metabolic engineering.Key points• Outlines the research progress of key enzymes in the biosynthetic pathway of SGs• Factors affecting the catalytic capacity of stevia glucosyltransferase• Provide guidance for the efficient synthesis of SGs in microbial cell factories.
Collapse
|
14
|
Abdel-Aal RA, Abdel-Rahman MS, Al Bayoumi S, Ali LA. Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113188. [PMID: 32783985 DOI: 10.1016/j.jep.2020.113188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stevia rebaudiana Bertoni is a perennial herb that belongs to the Asteraceae family. It is a natural sweetener plant known as "Sweet Leaf", "Sweet Herbs" and "Honey Leaf", which is estimated to be 300 times more sweetening than sugar cane. Stevia has been used as a traditional treatment for diabetes in many countries for hundreds of years. Several animal studies referred to the antihyperglycemic activity of stevia. However, the combined use of stevia with saxagliptin has not been studied so far, so this study has been done. The aim of the present study was to evaluate the antihyperglycemic effect of stevia alone and in combination with saxagliptin. MATERIALS AND METHODS Diabetes was induced in rats by i.p. injection of streptozotocin and nicotinamide. Animals were divided into five groups, each contains eight rats. Group I: included negative controland group II: included diabetic control that received saline. Group III: included diabetic rats that received 400 mg/kg/day stevia aqueous extract. Group IV: included diabetic rats that received saxagliptin 10 mg/kg/day. Group V: included diabetic rats that received stevia 400 mg/kg + saxagliptin 10 mg/kg. Food and water intake were measured daily while body weight was measured weekly. After 3 weeks animals were sacrificed and blood and tissue samples were collected. Fasting blood glucose (FBG), serum insulin, serum dipeptidylepeptidase-4 (DPP-4), TC, TGs, LDL, HDL, GSH and MDA were measured in treated and control rats by colorimetric and ELISA methods. RESULTS Both stevia and saxagliptin significantly reduced food, water intake, body weight and FBG. Stevia with saxagliptin produced more significant decrease in FBG. While serum insulin increased significantly in stevia, saxagliptin treated groups and their combination. Serum DPP-4 decreased significantly in all treated groups, concerning lipid profile, stevia and saxagliptin notably lowered TC, TGs, and LDL and increased HDL. Both stevia and saxagliptin remarkably decreased MDA and increased GSH compared to diabetic rats. In addition, stevia significantly improved the antidiabetic effects of saxagliptin. CONCLUSION Stevia has an antihyperglycemic effect and could enhance the antidiabetic activity of saxagliptin. DPP-4 attenuation, antihyperlipidemic and antioxidant activity as well as improvement of insulin sensitivity may be involved in the antidiabetic action of stevia.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt.
| | | | - Soad Al Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Egypt.
| | - Laila A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt.
| |
Collapse
|
15
|
Kurek JM, Król E, Krejpcio Z. Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients 2020; 13:nu13010112. [PMID: 33396905 PMCID: PMC7823366 DOI: 10.3390/nu13010112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
A number of health-promoting properties of Stevia rebaudiana Bertoni and its glycosides, including the antihyperglycemic activity, have been found. The mechanisms of the antidiabetic action of stevia have not been fully understood. The aim of this study was to evaluate the effects of supplementary steviol glycosides on high-fat fed streptozotocin-induced diabetic rats with particular attention to lipid metabolism. The experiment was conducted on 70 male Wistar rats, of which 60 were fed a high-fat diet for 8 weeks followed by intraperitoneal injection of streptozotocin, to induce type 2 diabetes. Afterwards, rats were divided into six groups and fed a high-fat diet supplemented with pure stevioside or rebaudioside A, at two levels (500 or 2500 mg/kg body weight (b.w.)) for 5 weeks. Three additional groups: diabetic untreated, diabetic treated with metformin, and healthy, served as respective controls. Blood and dissected internal organs were collected for hematological, biochemical, and histopathological tests. It was found that dietary supplementation with steviol glycosides did not affect blood glucose, insulin, and insulin resistance indices, antioxidant biomarkers, but normalized hyperlipidemia and affected the appetite, as well as attenuated blood liver and kidney function indices, and reduced tissular damage in diabetic rats. Steviol glycosides normalize lipid metabolism and attenuate internal organs damage in diabetes.
Collapse
|
16
|
Bhatt L, Amrutia J, Chakraborty M, Kamath J. Evaluation of cardioprotection and bio-efficacy enhancement of stevioside and diltiazem in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00054-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cardiovascular diseases and resultant complications of cardio-therapeutic regimens are one of the leading causes of mortalities in developing countries. Diltiazem is a calcium channel blocker primarily used in treatment of supraventricular arrhythmias, systemic hypertension, and hypertrophic cardiomyopathy. Stevioside, the chief component of Stevia plant, is a natural sweetener that has significant therapeutic properties. Stevioside is a known bioenhancer that acts by synergizing pharmacological activities of other drugs. Present study was designed to evaluate cardioprotective activity of stevioside and possible bioenhancement upon co-administration with diltiazem. Standard cardiotoxicity models—isoproterenol-induced myocardial infarction and ischemia-reperfusion injury (IRI) through modified Langendorff setup was used to test this hypothesis. Rats were randomly divided into control groups (normal—physiological saline and toxic—isoproterenol, 150 mg/kg, s.c., and IRI induced in normal control animals) and treatment groups (diltiazem—17.5 mg/kg, p.o., stevioside—100 and 200 mg/kg, p.o. and combination groups). At the end of the treatment period, animals were sacrificed and biochemical, electrocardiographic, and histopathological changes were measured.
Results
Pre-treatment with stevioside prevented leakage of biomarkers and normalized serum and perfusate levels of CK-MB, CK-NAC, LDH, AST, and ALT enzymes. It displayed lipid-lowering effect on TC and TG levels dose dependently. STV also showed protective action on levels of tissue antioxidant enzymes (SOD and Catalase), electrocardiographic parameters (HR, RR, QRS, QT, PR), and heart tissue histopathology when compared to concurrent toxic control groups. Combination of stevioside (200 mg/kg) and diltiazem (17.5 mg/kg) exerted a more significant pharmacodynamic response, significantly restored biomarkers, antioxidants levels, and myocardial histology, and normalized electrocardiographic parameters.
Conclusion
Stevioside and diltiazem both displayed cardioprotective effect when given alone. Co-administration displayed improved restorative action on antioxidant status, biomarkers, electrocardiographic parameters, and histology.
Collapse
|
17
|
El-Hadary A, Sitohy M. Safely effective hypoglycemic action of stevia and turmeric extracts on diabetic Albino rats. J Food Biochem 2020; 45:e13549. [PMID: 33161596 DOI: 10.1111/jfbc.13549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The potentiality of Stevia leaves and turmeric roots as remedies against diabetes mellitus type 2 was tested in this study. Stevia leaves and turmeric roots were extracted with ethanol:water (80:20 v/v) and analyzed by HPLC. Turmeric extract (TUE) was rich in; curcumin, gallic acid, and eugenol. Stevia extract (STE) contained 28 known compounds, including glycosides, aromatic organic acids, and catechin. Fifty rats were divided into five groups (10 rats each); the control group were fed with feed and water ad libitum. Forty rats were injected a single dose of alloxan, then treated with either 10 mg/kg glibenclamide (GLI), 300 mg/kg STE, or 200 mg/kg TUE or water (positive control) through daily gastric oral gavages for 56 days. Treating diabetic rats with TUE significantly reduced serum glucose and glycated hemoglobin down to the negative control levels. Both GLI and STE produced similar but less effective actions. Animals treated with either STE or TUE exhibited reduced levels of liver and kidney markers compared to the negative control, while GLI increased them significantly. It could be concluded that turmeric roots and stevia leaves extracts can be used treatment for type 2 diabetes. PRACTICAL APPLICATIONS: Turmeric roots and stevia leaves extracts may be used as a remedy for type 2 diabetic patients as aiding substituting treatments under medical supervision. The two plant sources can be used as raw materials for the extracts, which can be used under medical supervision as a gradual replacement of the synthetic antidiabetic drugs. These extracts can be used after a preliminary clinical study to determine the dose and frequency of administration. Stevia extract can be incorporated in drinks as a sweetener and drug. Turmeric extract has a bitter taste, so it may be incorporated in some foods such as bread, which is a traditional practice in some kinds of bread in Egypt. But its content in the bread and the acceptability of the taste should be adjusted. Alternatively, this food can incorporate both TUE and STE to get the best biological action and to conceal the bitter taste of turmeric.
Collapse
Affiliation(s)
- Abdalla El-Hadary
- Biochemistry Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Ranjbar T, Nekooeian AA, Tanideh N, Koohi-Hosseinabadi O, Masoumi SJ, Amanat S, Azarpira N, Monabati A. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. J Food Biochem 2020; 44:e13242. [PMID: 32478426 DOI: 10.1111/jfbc.13242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
The beneficial effects of Stevia on metabolic indices have been studied in recent years. However, controversial results emphasize the need for further investigation. We aimed to examine and compare the effects of Stevia's hydroalcoholic extract with two dosages (200, 400 mg/kg) with those of metformin (100 mg/kg) on metabolic syndrome (MetS) indices of rats fed with a high-fat, high-sucrose diet (HFHS). It was found that both Stevia extract and metformin could prevent the adverse effects of a HFHS on lipid profile, liver enzymes, total antioxidant capacity (TAC), and histopathologic factors. Except for the finding that metformin showed a greater potential to alleviate insulin resistance than did Stevia extract, no significant difference was observed between the rats receiving metformin or Stevia extract. In addition, using a high treatment dosage of Stevia extract did not lead to better results than a low dosage. Collectively, the efficacy of Stevia extracts to modify metabolic, oxidative, and histopathological indices in a MetS model was comparable to that of the metformin. PRACTICAL APPLICATIONS: This study was aimed to compare the efficiency of Stevia hydroalcoholic extract with metformin in attenuating MetS abnormalities of rats induced by a high-fat, high-sucrose diet. The results showed the beneficial changes caused due to the administration of Stevia extract on lipid profile, antioxidant capacity, liver enzyme, and liver histopathological indices. The changes were comparable with the results of metformin group. Despite some promising results, further investigation is suggested to evaluate the effectiveness of Stevia extract on human subjects.
Collapse
Affiliation(s)
- Tahereh Ranjbar
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Nekooeian
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Department of Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sasan Amanat
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology and Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Assi AA, Abd El-hamid DH, Abdel-Rahman MS, Ashry EE, AI Bayoumi S, Ahmed AM. The Potential Efficacy of Stevia Extract, Glimepiride and Their Combination in Treating Diabetic Rats: A Novel Strategy in Therapy of Type 2 Diabetes Mellitus. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2020. [DOI: 10.32527/2020/101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Doaa H. Abd El-hamid
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Esraa E. Ashry
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Soad AI Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Asmaa M. Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Hamadneh LA, Sabbah DA, Hikmat SJ, Al-Samad LA, Hasan M, Al-Qirim TM, Hamadneh IM, Al-Dujaili AH. Hypolipidemic effect of novel 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole as potential peroxisome proliferation-activated receptor-α agonist in acute hyperlipidemic rat model. Mol Cell Biochem 2019; 458:39-47. [PMID: 30905023 DOI: 10.1007/s11010-019-03528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
Abstract
The development of new antihyperlipidemic agents with higher potency and lower side effects is of high priority. In this study, 1,3,4 thiadiazole Schiff base derivatives were synthesized as potential peroxisome proliferation-activated receptor-α (PPARα) agonists and characterized using elemental analysis, FTIR, 1H-NMR, 13C-NMR and mass spectroscopy and then tested for their hypolipidemic activity in Triton WR-1339-induced acute hyperlipidemic rat model in comparison with bezafibrate. The compounds showed significant hypolipidemic activity. Induced fit docking showed that the compounds are potential activators of PPARα with binding scores - 8.00 Kcal/mol for 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole. PCR array analysis showed an increase in the expression of several genes involved in lipid metabolism through mitochondrial fatty acid β oxidation and are part of PPARα signaling pathway including Acsm3, Fabp4 and Hmgcs1. Gene expression of Lrp12 and Lrp1b involved in LDL uptake by liver cells and Cyp7a1 involved in cholesterol catabolism were also found to be upregulated.
Collapse
Affiliation(s)
- Lama A Hamadneh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Dima A Sabbah
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Suhair J Hikmat
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Luma A Al-Samad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mariam Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Tariq M Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Imad M Hamadneh
- Department of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | - Ammar H Al-Dujaili
- Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| |
Collapse
|