1
|
Pei E, Wang H, Li Z, Xie X, Cai L, Lin M. Endoplasmic reticulum stress inhibitor may substitute for sleeve gastrectomy to alleviate metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2023; 47:102229. [PMID: 37865225 DOI: 10.1016/j.clinre.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming the most common form of chronic liver disease worldwide. We explored the potential mechanisms responsible for the protective role of sleeve gastrectomy (SG) on MASLD in a high-fat diet (HFD) rat model. METHODS Rats were fed with HFD for 12 weeks to generate MASLD model that were subjected to SG or sham surgery. The endoplasmic reticulum stress (ERS) inhibitor 4-phenylbutyric acid (4-PBA) was injected intraperitoneally every day for 4 weeks after surgery to identify the impact of ERS. RESULTS The MASLD rat model was generated successfully, as indicated by significant upregulation of metabolic parameters. Fibroblast growth factor 21 (FGF21) and ERS-related proteins were increased in HFD rats, while expression of fibroblast growth factor receptor 1 was decreased as expected. An HFD also induced swelling and blurring of the endoplasmic reticulum and mitochondria in hepatocytes, and the above transformation could be relieved by SG and 4-PBA. SG and an ERS inhibitor both inhibited MASLD, but their combined treatment had no additional benefit. CONCLUSIONS Dysfunction of the FGF21 signaling pathway and hepatic steatosis and inflammation could be induced by an HFD, potentially causing MASLD. Bariatric surgery and ERS inhibition could alleviate MASLD by relieving ERS-mediated impairment of FGF21 signal transduction. These findings provide a new insight into the use of ERS inhibitors to treat MASLD, especially in patients who prefer to avoid surgery.
Collapse
Affiliation(s)
- Erli Pei
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhihong Li
- Department of General Surgery, Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Cai
- Department of Science and Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Raptis DD, Mantzoros CS, Polyzos SA. Fibroblast Growth Factor-21 as a Potential Therapeutic Target of Nonalcoholic Fatty Liver Disease. Ther Clin Risk Manag 2023; 19:77-96. [PMID: 36713291 PMCID: PMC9879042 DOI: 10.2147/tcrm.s352008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent disease without any approved treatment to-date despite intensive research efforts by researchers and pharmaceutical industry. Fibroblast growth factor (FGF)-21 has been gaining increasing attention as a possible contributing factor and thus therapeutic target for obesity-related metabolic disorders, including NAFLD, mainly due to its effects on lipid and carbohydrate metabolism. Most animal and human observational studies have shown higher FGF-21 concentrations in NAFLD than non-NAFLD, implying that FGF-21 may be increased to counteract hepatic steatosis and inflammation. However, although Mendelian Randomization studies have revealed that variations of FGF-21 levels within the physiological range may have effects in hyperlipidemia and possibly nonalcoholic steatohepatitis, they also indicate that FGF-21, in physiological concentrations, may fail to reverse NAFLD and may not be able to control obesity and other diseases, indicating a state of FGF-21 resistance or insensitivity that could not respond to administration of FGF-21 in supraphysiological concentrations. Interventional studies with FGF-21 analogs (eg, pegbelfermin, efruxifermin, BOS-580) in humans have provided some favorable results in Phase 1 and Phase 2 studies. However, the definite effect of FGF-21 on NAFLD may be clarified after the completion of the ongoing clinical trials with paired liver biopsies and histological endpoints. The aim of this review is to critically summarize experimental and clinical data of FGF-21 in NAFLD, in an attempt to highlight existing knowledge and areas of uncertainty, and subsequently, to focus on the potential therapeutic effects of FGF-21 and its analogs in NAFLD.
Collapse
Affiliation(s)
- Dimitrios D Raptis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece,Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Internal Medicine, Boston VA Healthcare System, Harvard Medical School, Boston, MA, 02115, USA
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece,Correspondence: Stergios A Polyzos, First Laboratory of Pharmacology, School of Medicine, Campus of Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece, Tel +30 2310 999316, Email
| |
Collapse
|
3
|
Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. Int J Biol Sci 2023; 19:66-88. [PMID: 36594101 PMCID: PMC9760446 DOI: 10.7150/ijbs.73936] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular and metabolic disease (CVMD) is becoming increasingly prevalent in developed and developing countries with high morbidity and mortality. In recent years, fibroblast growth factor 21 (FGF21) has attracted intensive research interest due to its purported role as a potential biomarker and critical player in CVMDs, including atherosclerosis, coronary artery disease, myocardial infarction, hypoxia/reoxygenation injury, heart failure, type 2 diabetes, obesity, and nonalcoholic steatohepatitis. This review summarizes the recent developments in investigating the role of FGF21 in CVMDs and explores the mechanism whereby FGF21 regulates the development of CVMDs. Novel molecular targets and related pathways of FGF21 (adenosine 5'-monophosphate-activated protein kinase, silent information regulator 1, autophagy-related molecules, and gut microbiota-related molecules) are highlighted in this review. Considering the poor pharmacokinetics and biophysical properties of native FGF21, the development of new generations of FGF21-based drugs has tremendous therapeutic potential. Related preclinical and clinical studies are also summarized in this review to foster clinical translation. Thus, our review provides a timely and insightful overview of the physiology, biomarker potential, molecular targets, and therapeutic potential of FGF21 in CVMDs.
Collapse
Affiliation(s)
- Huiling Tan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tong Yue
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| |
Collapse
|
4
|
Geißler C, Krause C, Neumann AM, Britsemmer JH, Taege N, Grohs M, Kaehler M, Cascorbi I, Lewis AG, Seeley RJ, Oster H, Kirchner H. Dietary induction of obesity and insulin resistance is associated with changes in Fgf21 DNA methylation in liver of mice. J Nutr Biochem 2021; 100:108907. [PMID: 34801693 DOI: 10.1016/j.jnutbio.2021.108907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
DNA methylation is dynamically regulated in metabolic diseases, but it remains unclear whether the changes are causal or consequential. Therefore, we used a longitudinal approach to refine the onset of metabolic and DNA methylation changes at high temporal resolution. Male C57BL/6N mice were fed with 60 % high-fat diet (HFD) for up to 12 weeks and metabolically characterized weekly. Liver was collected after 1, 2, 4, 5, 6, 7, 8, and 12 weeks and hepatic DNA methylation and gene expression were analyzed. A subset of obese mice underwent vertical sleeve gastrectomy (VSG) or metformin treatment and livers were studied. Distinct hepatic gene expression patterns developed upon feeding HFD, with genes from the fatty acid metabolism pathway being predominantly altered. When comparing metabolic data with gene expression and DNA methylation, in particular Fgf21 DNA methylation decreased before the onset of increased Fgf21 expression and metabolic changes. Neither weight loss induced by VSG nor improved glucose tolerance by metformin treatment could revert hepatic Fgf21 DNA methylation or expression. Our data emphasize the dynamic induction of DNA methylation upon metabolic stimuli. Reduced Fgf21 DNA methylation established before massive overexpression of Fgf21, which is likely an adaptive effort of the liver to maintain glucose homeostasis despite the developing insulin resistance and steatosis. Fgf21 DNA methylation resisted reversion by intervention strategies, illustrating the long-term effects of unhealthy lifestyle. Our data provide a temporal roadmap to the development of hepatic insulin resistance, comprehensively linking DNA methylation with gene expression and metabolic data.
Collapse
Affiliation(s)
- Cathleen Geißler
- Institute for Endocrinology and Diabetes, University of Lübeck, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Christin Krause
- Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany; German Center for Diabetes Research (DZD)
| | - Anne-Marie Neumann
- Institute of Neurobiology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Jan H Britsemmer
- Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Natalie Taege
- Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Martina Grohs
- Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Alfor G Lewis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Henriette Kirchner
- Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany; German Center for Diabetes Research (DZD).
| |
Collapse
|
5
|
Wang G, Wu B, Zhang L, Jin X, Wang K, Xu W, Zhang B, Wang H. The protective effects of trelagliptin on high-fat diet-induced nonalcoholic fatty liver disease in mice. J Biochem Mol Toxicol 2021; 35:e22696. [PMID: 33421258 DOI: 10.1002/jbt.22696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs in patients with type 2 diabetes mellitus (T2DM). Trelagliptin is an important member of the Gliptins family, which has been recently licensed for the treatment of T2DM. However, the pharmacological function of trelagliptin in NAFLD has not been previously reported. In this study, we aimed to investigate the roles of trelagliptin in the development of NAFLD in a mouse model. To induce NAFLD disease, C57BL/6 mice were fed a high-fat diet for 10 weeks. Our results indicate that trelagliptin reduced plasma lipid levels in NAFLD mice by reducing triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Treatment with trelagliptin exhibited an improvement in insulin resistance. More important, trelagliptin improved liver function by reducing alanine transaminase, aspartate transaminase, lactate dehydrogenase, and total bile acid. In addition, trelagliptin ameliorated oxidative stress in the liver of NAFLD mice by reducing malondialdehyde and increasing the levels of reduced glutathione and superoxide dismutase activity. Also, the enzyme-linked immunosorbent assay results indicate that trelagliptin-treated mice displayed anti-inflammatory properties by reducing the levels of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α. Hematoxylin and eosin and Oil red O staining show that trelagliptin treatment ameliorates liver tissue damage and hepatic lipid deposition. Mechanistically, we found that the administration of trelagliptin reduced the activity of hepatic nuclear factor-κB but increased the activity of AMP-activated protein kinase. These findings suggest that trelagliptin might become a promising therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xuefei Jin
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin Key Laboratory Of Urologic Oncology, Jilin University, Changchun, Jilin, China
| | - Kun Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Impact of sleeve gastrectomy and Roux-en-Y gastric bypass on biopsy-proven non-alcoholic fatty liver disease. Surg Endosc 2019; 34:2266-2272. [PMID: 31359195 DOI: 10.1007/s00464-019-07017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome. Our aim was to study the long-term effects of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on NAFLD/NASH. METHODS Between 2008 and 2015, 3813 patients had an intraoperative liver biopsy performed at the time of primary RYGB and SG at a single academic center. Utilizing strict inclusion criteria, 487 patients with biopsy-proven NAFLD who had abnormal alanine aminotransferase (ALT) or aspartate aminotransferase (AST) values (≥ 40 IU/L) at baseline were identified. Matching of SG to RYGB patients (1:4) was performed via logistic regression and propensity scores adjusting for clinical and liver histological characteristics. Changes in liver function tests (LFTs) at least 1 year after surgery were compared to baseline values and between the surgical groups. RESULTS A total of 310 (weighted) patients (SG n = 62, and RYGB n = 248) with a median follow-up time of 4 years (range, 1-10) were included in the analysis. The distribution of covariates was well-balanced after propensity matching. In 84% of patients, LFT values normalized after bariatric surgery at the last follow-up time. The proportions of patients having normalized LFT values did not differ significantly between the SG and RYGB groups (82% vs. 84%, p = 0.66). The AST decreased from (SG: 49.1 ± 21.5 vs. RYGB: 49.3 ± 22.0, p = 0.93) at baseline to (SG: 28.0 ± 16.5 vs. RYGB: 26.5 ± 15.5, p = 0.33) at the last follow-up. Similarly, a significant reduction in ALT values from (SG: 61.7 ± 30.0 vs. RYGB 59.4 ± 24.9, p = 0.75) at baseline to (SG: 27.2 ± 21.5 vs. RYGB: 26.1 ± 19.2, p = 0.52) at the last follow-up was observed. CONCLUSIONS In patients with biopsy-proven NAFLD/NASH, abnormal LFTs are normalized in most SG and RYGB patients by the end of the first postoperative year and remain normal until the last follow-up. This study also suggests that both bariatric procedures are similarly effective in improving liver function.
Collapse
|