1
|
Ahamba IS, Mary-Cynthia Ikele C, Kimpe L, Goswami N, Wang H, Li Z, Ren Z, Dong X. Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100222. [PMID: 39290671 PMCID: PMC11406001 DOI: 10.1016/j.fochms.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.
Collapse
Affiliation(s)
- Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | | | - Lionel Kimpe
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhen Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| |
Collapse
|
2
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
3
|
Yang M, Gao X, Ma Y, Wang X, Lei Z, Wang S, Hu H, Tang L, Ma Y. Bta-miR-6517 promotes proliferation and inhibits differentiation of pre-adipocytes by targeting PFKL. J Anim Physiol Anim Nutr (Berl) 2022; 106:1197-1207. [PMID: 34791721 DOI: 10.1111/jpn.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
The proliferation and differentiation of pre-adipocytes are regulated by microRNAs (miRNAs) and other factors. In this study, the potential functions of bta-miR-6517 in the regulation of pre-adipocyte proliferation and differentiation were explored. The qRT-PCR, oil red O staining and CCK-8 assay were used to evaluate the role of bta-miR-6517. Further, the target gene of bta-miR-6517 was identified using bioinformatics analysis, dual-luciferase reporter system and qRT-PCR system. The results found that the overexpression of bta-miR-6517 promoted the expression of proliferation marker genes and substantially increased the adipocyte proliferation vitality in the CCK-8 assay, whereas suppressing of bta-miR-6517 had the opposite effect. Overexpression bta-miR-6517 suppressed the expression of adipogenic genes, which inhibited lipid accumulation, whereas suppressing of bta-miR-6517 had the opposite effect. Furthermore, the dual-fluorescent reporter experiment results demonstrated that bta-miR-6517 directly targeted phosphofructokinase, liver type (PFKL). When bta-miR-6517 was either overexpressed or suppressed, it negatively regulated PFKL. In conclusion, we observed that bta-miR-6517 promoted adipocyte proliferation and inhibited differentiation by targeting PFKL.
Collapse
Affiliation(s)
- Mengli Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaoqian Gao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xingping Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Honghong Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
4
|
Du K, Chen GH, Bai X, Chen L, Hu SQ, Li YH, Wang GZ, He JW, Lai SJ. Dynamics of transcriptome and chromatin accessibility revealed sequential regulation of potential transcription factors during the brown adipose tissue whitening in rabbits. Front Cell Dev Biol 2022; 10:981661. [PMID: 36225319 PMCID: PMC9548568 DOI: 10.3389/fcell.2022.981661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue (BAT) represents a valuable target for treating obesity in humans. BAT losses of thermogenic capacity and gains a “white adipose tissue-like (WAT-like)” phenotype (BAT whitening) under thermoneutral environments, which could lead to potential low therapy responsiveness in BAT-based obesity treatments. However, the epigenetic mechanisms of BAT whitening remain largely unknown. In this study, BATs were collected from rabbits at day0 (D0), D15, D85, and 2 years (Y2). RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed to investigate transcriptome and chromatin accessibility of BATs at the four whitening stages, respectively. Our data showed that many genes and chromatin accessible regions (refer to as “peaks”) were identified as significantly changed during BAT whitening in rabbits. The BAT-selective genes downregulated while WAT-selective genes upregulated from D0 to Y2, and the de novo lipogenesis-related genes reached the highest expression levels at D85. Both the highly expressed genes and accessible regions in Y2 were significantly enriched in immune response-related signal pathways. Analysis of different relationships between peaks and their nearby genes found an increased proportion of the synchronous changes between chromatin accessibility and gene expression during BAT whitening. The synergistic changes between the chromatin accessibility of promoter and the gene expression were found in the key adipose genes. The upregulated genes which contained increased peaks were significantly enriched in the PI3K-Akt signaling pathway, steroid biosynthesis, TGF-beta signaling pathway, osteoclast differentiation, and dilated cardiomyopathy. Moreover, the footprinting analysis suggested that sequential regulation of potential transcription factors (TFs) mediated the loss of thermogenic phenotype and the gain of a WAT-like phenotype of BAT. In conclusion, our study provided the transcriptional and epigenetic frameworks for understanding BAT whitening in rabbits for the first time and might facilitate potential insights into BAT-based obesity treatments.
Collapse
Affiliation(s)
- Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guan-He Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shen-Qiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan-Hong Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guo-Ze Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jing-Wei He
- Sichuan Animal Husbandry Station, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Song-Jia Lai,
| |
Collapse
|
5
|
Wang G, Li M, Wang Y, Wang B, Pu H, Mao J, Zhang S, Zhou S, Luo P. Characterization of differentially expressed and lipid metabolism-related lncRNA-mRNA interaction networks during the growth of liver tissue through rabbit models. Front Vet Sci 2022; 9:998796. [PMID: 36118359 PMCID: PMC9477072 DOI: 10.3389/fvets.2022.998796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCharacterization the long non-coding RNAs (lncRNAs) and their regulated mRNAs involved in lipid metabolism during liver growth and development is of great value for discovering new genomic biomarkers and therapeutic targets for fatty liver and metabolic syndrome.Materials and methodsLiver samples from sixteen rabbit models during the four growth stages (birth, weaning, sexual maturity, and somatic maturity) were used for RNA-seq and subsequent bioinformatics analyses. Differentially expressed (DE) lncRNAs and mRNAs were screened, and the cis/trans-regulation target mRNAs of DE lncRNAs were predicted. Then the function enrichment analyses of target mRNAs were performed through Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. The target protein interaction (PPI) and lncRNA-mRNA co-expression networks were constructed using string version 11.0 platform and R Stats. Finally, six lncRNAs and six mRNAs were verified taking RT-qPCR.ResultsLiver Oil Red O detection found that the liver showed time-dependent accumulation of lipid droplets. 41,095 lncRNAs, 30,744 mRNAs, and amount to 3,384 DE lncRNAs and 2980 DE mRNAs were identified from 16 cDNA sequencing libraries during the growth of liver. 689 out of all DE lncRNAs corresponded to 440 DE mRNAs by cis-regulation and all DE mRNAs could be regulated by DE lncRNAs by trans-regulation. GO enrichment analysis showed significant enrichment of 892 GO terms, such as protein binding, cytosol, extracellular exsome, nucleoplasm, and oxidation-reduction process. Besides, 52 KEGG pathways were significantly enriched, including 11 pathways of lipid metabolism were found, like Arachidonic acid metabolism, PPAR signaling pathway and Biosynthesis of unsaturated fatty acids. After the low expression DE mRNAs and lncRNAs were excluded, we further obtained the 54 mRNAs were regulated by 249 lncRNAs. 351 interaction pairs were produced among 38 mRNAs and 215 lncRNAs through the co-expression analysis. The PPI network analysis found that 10 mRNAs such as 3β-Hydroxysteroid-Δ24 Reductase (DHCR24), lathosterol 5-desaturase (SC5D), and acetyl-CoA synthetase 2 (ACSS2) were highly interconnected hub protein-coding genes. Except for MSTRG.43041.1, the expression levels of the 11 genes by RT-qPCR were the similar trends to the RNA-seq results.ConclusionThe study revealed lncRNA-mRNA interation networks that regulate lipid metabolism during liver growth, providing potential research targets for the prophylaxis and treatment of related diseases caused by liver lipid metabolism disorders.
Collapse
Affiliation(s)
- Guoze Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Maolin Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yi Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Binbin Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hanxu Pu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jinxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shuai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Shi Zhou
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Peng Luo
| |
Collapse
|
6
|
Du K, Zhao X, Li Y, Wu Z, Sun W, Wang J, Jia X, Chen S, Lai S. Genome-Wide Identification and Characterization of Circular RNAs during Skeletal Muscle Development in Meat Rabbits. Animals (Basel) 2022; 12:ani12172208. [PMID: 36077928 PMCID: PMC9454498 DOI: 10.3390/ani12172208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Our knowledge of circRNAs regulating skeletal muscle development remains largely unknown in meat rabbits. Therefore, we collected the leg muscle tissues of ZIKA rabbits at three key growth stages. A combination of circRNA assembly from a circRNA-seq library and the whole-transcriptome sequencing data identified credible circRNAs in our samples. We found these circRNAs were more conserved between rabbits and humans than between rabbits and mice. A prediction of circRNA–microRNA–mRNAs networks revealed that circRNAs might be the regulators that mainly functioned in rabbits’ muscle neuron development and metabolic processes. Our work provides a catalog of circRNAs regulating skeletal muscle development at key growth stages in rabbits and might give a new insight into rabbit breeding. Abstract Skeletal muscle development plays a vital role in muscle quality and yield in meat rabbits. Circular RNAs (circRNAs) are a new type of single-stranded endogenous non-coding RNAs involved in different biological processes. However, our knowledge of circRNAs regulating skeletal muscle development remains largely unknown in meat rabbits. In this study, we collected the leg muscle tissues of ZIKA rabbits at three key growth stages. By performing whole-transcriptome sequencing, we found the sequential expression of day 0- (D0-), D35-, and D70-selective mRNAs mainly functioned in muscle development, nervous development, and immune response during skeletal muscle development, respectively. Then, a combination of circRNA assembly from a circRNA-seq library and the whole-transcriptome sequencing data identified 6845 credible circRNAs in our samples. Most circRNAs were transcribed from exons of known genes, contained few exons, and showed short length, and these circRNAs were more conserved between rabbits and humans than between rabbits and mice. The upregulated circRNAs, which were synchronously changed with host genes, primarily played roles in MAPK signaling pathways and fatty acid biosynthesis. The prediction of circRNA–microRNA–mRNAs networks revealed that circRNAs might be the regulators that mainly functioned in rabbits’ muscle neuron development and metabolic processes. Our work provides a catalog of circRNAs regulating skeletal muscle development at key growth stages in rabbits and might give a new insight into rabbit breeding.
Collapse
|
7
|
Hu J, Li W, Qiao X, Li W, Xie K, Wang Y, Huang B, Zhao Q, Liu L, Fan X. Characterization of microRNA Profiles in Pasteurella multocida-Infected Rabbits and Identification of miR-29-5p as a Regulator of Antibacterial Immune Response. Front Vet Sci 2021; 8:746638. [PMID: 34869721 PMCID: PMC8635715 DOI: 10.3389/fvets.2021.746638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pasteurella multocida is the pathogenic agent for a variety of severe diseases in livestock, including rabbits. MicroRNAs (miRNAs) participate in the immune response to the pathogen. Distinct miRNA expression patterns were explored in rabbit lung by small-RNA deep sequencing to assess dysregulated miRNAs during P. multocida infection. Totally, 571 miRNAs were screened, of which, 62 were novel, and 32 exhibited differential expression (DE). Of the 32 known DE-miRNAs, 13 and 15 occurred at 1 day and 3 days post-infection (dpi); and ocu-miR-107-3p and ocu-miR-29b-5p were shared between the two time points. Moreover, 7,345 non-redundant target genes were predicted for the 32 DE-miRNAs. Putative target genes were enriched in diverse GO and KEGG pathways and might be crucial for disease resistance. Interestingly, upregulation of ocu-miR-29-5p suppresses P. multocida propagation and downregulates expression of epithelial membrane protein-2 (EMP2) and T-box 4 (TBX4) genes by binding to their 3' untranslated region in RK13 cells. Thus, ocu-miR-29-5p may indirectly inhibit P. multocida invasion by modulating genes related to the host immune response, such as EMP2 and TBX4.
Collapse
Affiliation(s)
- Jiaqing Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xibo Qiao
- Shandong New Hexin Technology Co. Ltd., Taian, China
| | - Wenjie Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kerui Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Bing Huang
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiaoya Zhao
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
8
|
Shao J, Bai X, Pan T, Li Y, Jia X, Wang J, Lai S. Genome-Wide DNA Methylation Changes of Perirenal Adipose Tissue in Rabbits Fed a High-Fat Diet. Animals (Basel) 2020; 10:E2213. [PMID: 33255930 PMCID: PMC7761299 DOI: 10.3390/ani10122213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that plays an important role in gene regulation without an altered DNA sequence. Previous studies have demonstrated that diet affects obesity by partially mediating DNA methylation. Our study investigated the genome-wide DNA methylation of perirenal adipose tissue in rabbits to identify the epigenetic changes of high-fat diet-mediated obesity. Two libraries were constructed pooling DNA of rabbits fed a standard normal diet (SND) and DNA of rabbits fed a high-fat diet (HFD). Differentially methylated regions (DMRs) were identified using the option of the sliding window method, and online software DAVID Bioinformatics Resources 6.7 was used to perform Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DMRs-associated genes. A total of 12,230 DMRs were obtained, of which 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated, 233 down-regulated) of identified DMRs were observed in the gene body and promoter regions, respectively. GO analysis revealed that the DMRs-associated genes were involved in developmental process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289), and KEGG pathway enrichment analysis revealed the DMRs-associated genes were enriched in linoleic acid metabolism (KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010). Our study further elucidates the possible functions of DMRs-associated genes in rabbit adipogenesis, contributing to the understanding of HFD-mediated obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Ting Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| |
Collapse
|