1
|
Rabail R, Altemimi AB, Maerescu CM, Socol CT, Criste FL, Khalid AR, Mahwish, Hussain S, Liu ZW, Aadil RM. Consumption of edible oil blended with flax, coconut, sunflower, and olive oil can significantly improve the negative health consequences of high-fat/high-cholesterol diet in Sprague Dawley rats. Front Nutr 2024; 11:1469601. [PMID: 39371945 PMCID: PMC11452909 DOI: 10.3389/fnut.2024.1469601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Increasing cardiac, hepatic, and metabolic diseases have raised the need to modify our contemporary lifestyles toward balancing and diversifying the nutrients in our daily diet. Objective: Dietary fats should be modified to healthier versions by blending different vegetable oils. Therefore, in this study, an oil blend with health-protective and promoting fatty acid combinations was investigated to bring down the progression of cardiac and other metabolic diseases. Methodology A bio-efficacy trial was performed to investigate the therapeutic potential of an oil blend in 30 hyperlipidemic rats. Five rats were allocated to each group (coconut, flaxseed, olive, sunflower, and blended oil) for 42 days and were compared with the initial values of hyperlipidemic rats. Methodological investigations were performed for the body weight, naso-anal length, various obesity indices, visceral fat accumulation, blood and serum, cardiovascular risk indices, and echocardiograph. Results Blended oil consumption indicated significant reductions of 53.12% in body fat content (3.98 ± 0.96), 6.82% in Lee index (289.60 ± 8.27), 16.84% in BMI (0.15 ± 0.003), 57.37% in total cholesterol (52.00 ± 9.03), 68.57% in triacylglycerides (99.00 ± 9.19), 61.16% in atherogenic index (0.88 ± 0.12), and 58.72% in coronary risk index (2.88 ± 0.12), when compared with the initial values. Conclusion Blended oil consumption has significantly reduced various obesity indices, improved lipid profile, and provided significant protection against cardiovascular risk indices. Moreover, the results of blended oil indicated significant health protective ameliorations in electrocardiographs. Its regular consumption could help to reduce the onset of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Cristina Maria Maerescu
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Claudia Terezia Socol
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Florin Leontin Criste
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mahwish
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Kheirouri S, Alizadeh M, Keramati M. High use of non-hydrogenated plant source oils and mayonnaise sauce increase the risk of Parkinson disease. Nutr Neurosci 2024; 27:849-856. [PMID: 37997257 DOI: 10.1080/1028415x.2023.2277974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Objectives: This study aimed to assess the contribution of edible/cooking oils and mayonnaise sauce in the severity, motor and non-motor symptoms, and risk of Parkinson's disease (PD).Methods: In this study, 120 patients with PD and 50 healthy individuals participated. The frequency and quantity of edible/cooking oils including animal and plant source oils (hydrogenated and nonhydrogenated) and mayonnaise sauce used by participants were determined using a food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS).Results: Patients with PD had lower use of hydrogenated plant-based oil (HPO) (p < 0.001) and animal oils (p < 0.001) but had higher use of non-hydrogenated plant-based oil (NHPO) (p < 0.001), olive oil (p = 0.02), and mayonnaise sauce (p < 0.001) compared with the healthy subjects. Use of each unit HPO reduced 4% the odds of PD (p = 0.01). The odds of PD increased 20% by each unit increase in NHPO usage (p = 0.001), 49% by olive oil (p = 0.02), and 127% by mayonnaise sauce (p = 0.004) intake. According to receiver operator characteristics curve analysis, mayonnaise sauce and NHPO had the largest area under the curve in predicting PD. Intake of animal oil was positively correlated with total score of UPDRS (p = 0.05) and motor symptoms (p = 0.04). Intake of butter was positively correlated with total score of UPDRS (p = 0.047), nonmotor aspects of experiences of daily living (p = 0.02), and motor examination (p = 0.02).Discussion: The findings indicate that high intake of HPO reduces, while high intake of NHPO, olive oil, and mayonnaise sauce increases the odds of PD.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Nor Mahiran SNS, Abd Kadir NH, Maulidiani M, Tengku Mohamad TR, Gooderham NJ, Alam M. Multivariate modelling analysis for prediction of glycidyl esters and 3-monochloropropane-1,2-diol (3-MCPD) formation in periodically heated palm oil. Heliyon 2023; 9:e20413. [PMID: 37780749 PMCID: PMC10539964 DOI: 10.1016/j.heliyon.2023.e20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
Palm oil is a vegetable oil that is widely used for cooking and deep-frying because of its affordability. However, repeatedly heated palm oil is also prone to oxidation due to its significant content of unsaturated fatty acids and other chemical toxicants such as glycidyl esters and 3-monochloropropane-1,2-diol (3-MCPD). Initially, the physicochemical properties such as colour, viscosity, peroxide, p-anisidine and total oxidation (TOTOX) of periodically heated palm oil were investigated. Chemical profiling and fingerprinting of six different brands of palm cooking oil during heating cycles between 90 and 360 min were conducted using Fourier transform infrared (FTIR) and 1H Nuclear Magnetic Resonance (NMR) metabolomics. In addition, the multivariate analysis was employed to evaluate the 1H NMR spectroscopic pattern of repeatedly heated palm oil with the corresponding physicochemical properties. The FTIR metabolomics showed significant different of the chemical fingerprinting subjected to heating duration, which in agreement with the result of 1H NMR metabolomics. Partial least squares (PLS) model revealed that most of the physicochemical properties of periodically heated palm oil are positively correlated (R2 values of 0.98-0.99) to their spectroscopic pattern. Based on the findings, the color of the oils darkened with increased heating time. The peroxide value (PV), p-anisidine value (p-AnV), and total oxidation (TOTOX) values increased significantly due to degradation of unsaturated compounds and oxidation products formed. We identified targeted metabolites (probable carcinogens) such as 3-monochloropropane-1,2-diol (3-MCPD) and glycidyl ester (GE), indicating the conversion of 3-MCPD to GE in repeatedly heated oils based on PCA and OPLSDA models. Our correlation analysis of NMR and physicochemical properties has shown that the conversion of 3-MCPD to GE was significantly increased from 180 to 360 min cooking time. The combination spectroscopic techniques with physicochemical properties are a reliable and robust methods to evaluate the characteristics, stability and chemical's structure changes of periodically heated palm oil, which may contribute to probable carcinogens development. This study has proven that combination of NMR and physicochemical analysis may predict the formation of the probable carcinogens of heated cooking oil over time which emphasizing the need to avoid certain heating cycles to mitigate formation of probable carcinogens during cooking process.
Collapse
Affiliation(s)
| | - Nurul Huda Abd Kadir
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia
| | | | | | - Nigel J. Gooderham
- Department of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongbuk, 780714, South Korea
| |
Collapse
|
4
|
da Silva BSF, Ferreira NR, Alamar PD, de Melo e Silva T, Pinheiro WBDS, dos Santos LN, Alves CN. FT-MIR-ATR Associated with Chemometrics Methods: A Preliminary Analysis of Deterioration State of Brazil Nut Oil. Molecules 2023; 28:6878. [PMID: 37836721 PMCID: PMC10574611 DOI: 10.3390/molecules28196878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Brazil nut oil is highly valued in the food, cosmetic, chemical, and pharmaceutical industries, as well as other sectors of the economy. This work aims to use the Fourier transform infrared (FTIR) technique associated with partial least squares regression (PLSR) and principal component analysis (PCA) to demonstrate that these methods can be used in a prior and rapid analysis in quality control. Natural oils were extracted and stored for chemical analysis. PCA presented two groups regarding the state of degradation, subdivided into super-degraded and partially degraded groups in 99.88% of the explained variance. The applied PLS reported an acidity index (AI) prediction model with root mean square error of calibration (RMSEC) = 1.8564, root mean square error of cross-validation (REMSECV) = 4.2641, root mean square error of prediction (RMSEP) = 2.1491, R2cal (calibration correlation coefficient) equal to 0.9679, R2val (validation correlation coefficient) equal to 0.8474, and R2pred (prediction correlation coefficient) equal to 0, 8468. The peroxide index (PI) prediction model showed RMSEC = 0.0005, REMSECV = 0.0016, RMSEP = 0.00079, calibration R2 equal to 0.9670, cross-validation R2 equal to 0.7149, and R2 of prediction equal to 0.9099. The physical-chemical analyses identified that five samples fit in the food sector and the others fit in other sectors of the economy. In this way, the preliminary monitoring of the state of degradation was reported, and the prediction models of the peroxide and acidity indexes in Brazil nut oil for quality control were determined.
Collapse
Affiliation(s)
- Braian Saimon Frota da Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Priscila Domingues Alamar
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Thiago de Melo e Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | | | - Lucely Nogueira dos Santos
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Cláudio Nahum Alves
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| |
Collapse
|
5
|
Othón-Díaz ED, Fimbres-García JO, Flores-Sauceda M, Silva-Espinoza BA, López-Martínez LX, Bernal-Mercado AT, Ayala-Zavala JF. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants (Basel) 2023; 12:antiox12040861. [PMID: 37107236 PMCID: PMC10135015 DOI: 10.3390/antiox12040861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.
Collapse
Affiliation(s)
- Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Leticia X. López-Martínez
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
6
|
Yu HH, Chen YC, Su HP, Chen L, Chen HH, Lin KYA, Lin CH. Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158885. [PMID: 36169020 DOI: 10.1016/j.scitotenv.2022.158885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Tungsten trioxide (WO3)-based nanoparticles (NPs) are gaining popularity because of their exciting potential for photocatalytic applications; however, the toxic potential of WO3-based NPs remains a concern. In this study, we evaluated the toxic risk of WO3 NPs and hydrated WO3 NPs (WO3·H2O NPs) using lung cells and explored the underlying mechanism. WO3 NPs and WO3·H2O NPs significantly decreased the number of viable cells (59.5 %-85.8 % of control) and promoted apoptosis in human alveolar basal epithelial A549 cells after a 24-h exposure. Both WO3 NPs and WO3·H2O NPs reduced the expression of heme oxygenase-1 (0.15-0.33 folds of control) and superoxide dismutase 2 (0.31-0.66 folds of control) and increased reactive oxygen species production (1.4-2.6 folds of control) and 8-hydroxy-2'-deoxyguanosine accumulation (1.22-1.43 folds of control). The results showed that WO3 NPs have higher cytotoxicity and oxidative potential than WO3·H2O NPs. In addition, the WO3 NP cellular uptake rate was significantly higher than the WO3·H2O NPs uptake rate in pulmonary cells. The greater extent of oxidative adverse effects induced by WO3-based NPs appears to be related to the enhanced particle uptake. WO3 NPs and WO3·H2O NPs exposure led to the secretion of inflammatory factor interleukin 6 (1.63-3.42 folds of control). Decreases in serpin family A member 1 gene expression (0.28-0.58 folds of control) and increases in the oxidation of neutrophil elastase inhibitor (1.34-1.62 folds of control) in pulmonary cells also suggest that exposure to WO3 NPs and WO3·H2O NPs raises the risk of developing chronic obstructive pulmonary disease. Taken together, our findings indicate that the toxic risk of WO3 NPs and WO3·H2O NPs must be considered when manufacturing and applying WO3-based NPs.
Collapse
Affiliation(s)
- Hsin Her Yu
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Han-Pang Su
- Third Research Division, Taiwan Research Institute, New Taipei City 251030, Taiwan
| | - Liliang Chen
- Johnson & Johnson Medical (Suzhou) Ltd., Suzhou 215126, China
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
7
|
Nili-Ahmadabadi A, Torabi K, Mohammadi M, Heshmati A. Thermally oxidized sunflower oil diet alters leptin/ghrelin balance and lipid profile in rats: Possible role of reactive aldehydes in dyslipidemia. J Food Biochem 2022; 46:e14514. [PMID: 36377844 DOI: 10.1111/jfbc.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Sunflower oil is a common edible oil in the world, which is highly prone to oxidative degradation during the frying process. The present study aimed to investigate the effects of products obtained from the thermal oxidation process of sunflower oil on metabolic indices, and the secretion status of leptin and ghrelin in rats. In vivo studies were designed after determining the rate of formation of active aldehydes and peroxide value in sunflower oil following 300°C in a period of 30-240 min. To this end, 36 rats in 6 separate groups were fed with 2 ml of normal saline, fresh sunflower oil, and heated oils at 30, 60, 120, and 240 min for 45 days. Finally, lipid profile changes and leptin/ghrelin secretion were examined, along with histological changes in the liver tissue. The results indicated a significant increase in serum LDL, VLDL and triglycerides, and a decrease in HDL, in the groups treated with heated oils. These changes were associated with a higher accumulation of triglycerides, active aldehydes, and histological changes in the hepatic tissue. Although the serum ghrelin level in the groups receiving heated oil did not change significantly compared to the fresh oil, the serum leptin level increased significantly in the groups receiving heated oil. According to our findings, increasing the time of sunflower oil heating enhanced the formation of active aldehydes, so that daily consumption of such oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance. PRACTICAL APPLICATIONS: Sunflower oil is highly prone to oxidative degradation during the frying process. Increasing time of sunflower oil heating enhanced the formation of active aldehydes. Daily consumption of oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance.
Collapse
Affiliation(s)
- Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiyana Torabi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Rabail R, Shabbir MA, Sahar A, Miecznikowski A, Kieliszek M, Aadil RM. An Intricate Review on Nutritional and Analytical Profiling of Coconut, Flaxseed, Olive, and Sunflower Oil Blends. Molecules 2021; 26:7187. [PMID: 34885769 PMCID: PMC8659046 DOI: 10.3390/molecules26237187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vegetable oils (VOs), being our major dietary fat source, play a vital role in nourishment. Different VOs have highly contrasting fatty acid (FA) profiles and hence possess varying levels of health protectiveness. Consumption of a single VO cannot meet the recommended allowances of various FA either from saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA), Ω-3 PUFAs, and medium-chain triglycerides (MCTs). Coconut oil (CO), flaxseed oil (FO), olive oil (OO), and sunflower oil (SFO) are among the top listed contrast VOs that are highly appreciated based on their rich contents of SFAs, Ω-3 PUFAs, MUFAs, and Ω-6 PUFA, respectively. Besides being protective against various disease biomarkers, these contrasting VOs are still inappropriate when consumed alone in 100% of daily fat recommendations. This review compiles the available data on blending of such contrasting VOs into single tailored blended oil (BO) with suitable FA composition to meet the recommended levels of SFA, MUFA, PUFA, MCTs, and Ω-3 to Ω-6 PUFA ratios which could ultimately serve as a cost-effective dietary intervention towards the health protectiveness and improvement of the whole population in general. The blending of any two or more VOs from CO, FO, OO, and SFO in the form of binary, ternary, or another type of blending was found to be very conclusive towards balancing FA composition; enhancing physiochemical and stability properties; and promising the therapeutic protectiveness of the resultant BOs.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
- Department Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Antoni Miecznikowski
- Department of Fermentation Technology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 02-532 Warsaw, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| |
Collapse
|
9
|
Lin CH, Lung SCC, Chen YC, Wang LC. Pulmonary toxicity of actual alveolar deposition concentrations of ultrafine particulate matters in human normal bronchial epithelial cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50179-50187. [PMID: 33954916 DOI: 10.1007/s11356-021-14265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a major worldwide concern, and exposure to particulate matter (PM) can increase the risks of pulmonary diseases. Normal human bronchial epithelial cells were applied to clarify the role of ultrafine PM (UFPM) in the pathogenesis of pulmonary toxic effects with realistic alveolar deposition doses. The UFPM used in this research originated from vehicular emissions and coal combustion. UFPM exposure of up to 72 h was found to induce significant time- and concentration-dependent decreases in cell viability. Exposure to UFPM increased reactive oxygen species (ROS) accumulation through heme oxygenase-1 (HO-1) inhibition and induced massive oxidative stress that increased the interleukin-8 (IL-8) expression. UFPM also reduced the pulmonary trans-epithelial electrical resistance through the depletion of zonula occludens (ZO) proteins. Finally, UFPM decreased the α1-antitrypsin (A1AT) expression, which implies high risk of chronic obstructive pulmonary disease (COPD). The evidence demonstrates that exposure to UFPM, even at very low concentrations, may affect the functions of the respiratory system.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| | | | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Lung-Chun Wang
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| |
Collapse
|