Gu S, Hu S, Wang S, Shi C, Qi C, Wan R, Fan G. Altered biliary microbial and metabolic profile reveals the crosstalk between NAFLD and cholelithiasis.
Clin Res Hepatol Gastroenterol 2024;
48:102431. [PMID:
39094784 DOI:
10.1016/j.clinre.2024.102431]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND
The relationship between non-alcoholic fatty liver disease (NAFLD) and cholelithiasis is intricate, with alterations in the microenvironment potentially mediating this interplay. Thus, this study aimed to explore the biliary microbiota and metabolites of patients with cholelithiasis and detect changes induced by comorbid NAFLD.
METHODS
In this study, 16S rRNA gene sequencing and metabolome analysis were performed on biliary samples collected from 35 subjects. Then, patients were stratified into two groups: the comorbidity group (n = 18), consisting of cholelithiasis patients with NAFLD, and the non-comorbidity group (n = 17), comprising cholelithiasis patients without NAFLD.
RESULTS
Comorbid NAFLD did not significantly increase α-diversity but affected β-diversity. A statistically significant difference was observed in the abundance of biliary metabolites between the two groups. Specifically, differences in the abundance of 4 phyla, 19 genera, and 28 metabolites were significant between the two groups. Correlation analysis demonstrated positive associations among 12α-hydroxylated bile acid levels, Pyramidobacter and Fusobacterium abundance, AST levels, and the fibrosis-4 index (p < 0.05, r > 0.3), all of which were increased in patients with cholelithiasis and comorbid NAFLD.
CONCLUSIONS
The relationship between cholelithiasis and NAFLD influences the biliary microbial and metabolic profile, creating a detrimental microenvironment that promotes the disease progression.
Collapse