1
|
Giovannini M, Mori F, Barni S, Saretta F, Arasi S, Castagnoli R, Liotti L, Mastrorilli C, Pecoraro L, Caminiti L, Sturm GJ, Marseglia GL, Del Giudice MM, Novembre E. Hymenoptera venom allergy in children. Ital J Pediatr 2024; 50:262. [PMID: 39707411 DOI: 10.1186/s13052-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 12/23/2024] Open
Abstract
From a taxonomic point of view, Hymenoptera are subclassified into families: Apidae, including honeybees (Apis mellifera) and bumblebees (Bombus), and Vespidae, which, in turn, are divided into the subfamilies of Vespinae (wasps, including hornets, vespules, dolichovespules) and Polistinae (paper wasp). Hypersensitivity to Hymenoptera venom can be linked to immunological (IgE-mediated or non-IgE-mediated) and non-immunological mechanisms. Reactions are classified into local reactions, large local reactions, systemic reactions, toxic reactions, and unusual reactions. In general, children sensitize less frequently and have less severe reactions than adults, probably due to less exposure to repeated stings and fewer comorbidities. There are risk factors for systemic reactions that should be discussed with patients and their parents as appropriate. A correct diagnosis of Hymenoptera venom allergy relies on a careful clinical history and the appropriate use of skin and in vitro tests. The in vitro tests include serum specific IgE toward venom extracts and toward allergenic molecules. In complex diagnoses, CAP-inhibition and the Basophil Activation Test can also be used. In the presence of a systemic reaction, the basal serum tryptase measurement should be performed to rule out mastocytosis. In case of allergic reactions to Hymenoptera stings, in the acute phase, according to the current guidelines, the treatment of signs and symptoms mainly includes the use of adrenaline as first-line treatment in case of anaphylaxis and antihistamines and corticosteroids as subsequent lines of treatment. Given the impossibility of avoiding a new sting with certainty, the treatment of choice in subjects with hypersensitivity to Hymenoptera venom who have experienced systemic reactions is based on venom immunotherapy (VIT), with the venom of the responsible stinging insect identified after an adequate allergological work-up. VIT is performed in a suitable environment and has proved to be safe and effective with various administration protocols, both accelerated and conventional. The prevention of Hymenoptera venom anaphylaxis in patients who have already developed a previous episode is crucial and must be supported by environmental protection interventions and early therapy. Places where one is more likely to encounter insects and risky behaviors should be avoided.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, 50139, Italy.
- Department of Health Sciences, University of Florence, Florence, 50139, Italy.
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, 33100, Italy
| | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, 00165, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Lucia Liotti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, 60123, Italy
| | - Carla Mastrorilli
- Pediatric Hospital Giovanni XXIII, Pediatric and Emergency Department, AOU Policlinic of Bari, Bari, 70126, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, 37126, Italy
| | - Lucia Caminiti
- Department of Human Pathology in Adult and Development Age "Gaetano Barresi", Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, Messina, 98124, Italy
| | - Gunter Johannes Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
- Allergy Outpatient Clinic Reumannplatz, Vienna, Austria
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, 80138, Italy
| | - Elio Novembre
- Department of Health Sciences, University of Florence, Florence, 50139, Italy
| |
Collapse
|
2
|
Tischler S, Trautmann A, Goebeler M, Stoevesandt J. Bee/Vespula Venom-Specific IgE Ratio Greater Than 5:1 Indicates Culprit Insect in Double-Sensitized Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)01112-7. [PMID: 39505106 DOI: 10.1016/j.jaip.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Venom-allergic patients are frequently double-sensitized to honeybee venom (BV) and Vespula venom (VV). Genuine double allergy is uncommon. OBJECTIVES To assess whether a quantitative comparison of BV- and VV-specific IgE levels permits an identification of the culprit venom in double-sensitized patients, and to evaluate whether independent sensitization to BV- and VV-specific components corresponds to an indication for double immunotherapy. METHODS This single-center observational study evaluated 1,069 consecutive patients; 490 nonallergic controls were available for statistical comparison. The diagnosis (BV allergy, VV allergy, or double allergy) was based on a comprehensive allergological workup including patient history, IgE serology, intradermal skin test, and, when required, basophil activation testing. Quantitative allergen-specific IgE to BV, VV, rApi m 1, and rVes v 5 was retrospectively compared with the final diagnosis. The ratio of BV/VV-specific IgE levels was considered in double-sensitized venom-allergic patients. RESULTS Sensitization to whole-venom preparations and components was frequent in patients and asymptomatic controls, with higher specific IgE levels in the patient group. At least 5:1 dominance of the specific IgE to either BV or VV was documented in 239 of 459 double-sensitized venom-allergic patients (52.1%). Of these patients 232 (97.1%) received a diagnosis of monoallergy to only the venom to which they were dominantly sensitized. CONCLUSIONS Dominant specific IgE at a ratio of 5:1 indicates the culprit venom in double-sensitized allergic patients. Additional component-resolved diagnostic testing can be restricted to cases with double sensitization to whole venom at a ratio of less than 5:1. Double sensitization to rApi m 1 and rVes v 5 per se does not justify double venom immunotherapy.
Collapse
Affiliation(s)
- Simon Tischler
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Axel Trautmann
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Stoevesandt
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Valero H, Luengo O, Cardona V, Pereira J, Labrador-Horrillo M. Unraveling wasp sensitization in a patient with systemic mastocytosis by CAP-inhibition assay. Allergol Immunopathol (Madr) 2024; 52:85-88. [PMID: 39278856 DOI: 10.15586/aei.v52i5.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Systemic mastocytosis (SM) is a clonal mast cell disorder that can lead to potentially severe anaphylactic reactions. Hymenoptera sting is one of the most frequent triggers of anaphylaxis in these patients, and diagnosis of indolent SM (ISM) without skin involvement (ISMs) is not rare. In this subgroup of patients, venom immunotherapy (VIT) is an effective treatment decreasing subsequent systemic reactions, and lifelong administration is recommended. An individualized diagnosis is necessary to offer the most adequate VIT, and molecular diagnosis (MD) may be useful to discriminate between primary sensitization and cross-reactivity. Nevertheless, other techniques such as ImmunoCAP inhibition assays may be necessary to identify the genuine sensitization to offer the most suitable VIT. We present a male patient with an anaphylactic reaction following several wasp stings. The patient was diagnosed with ISM, and allergy to both Polistes dominula and Vespula sp venom was confirmed. In this scenario, MD did not discriminate between a genuine double sensitization and venom cross-reactivity between both vespids. Thus, CAP-inhibition assay was performed. This case indicated the importance of an accurate diagnosis of hymenoptera venom allergy (HVA). It also highlights the usefulness of CAP-inhibition assays when MD fails to distinguish between genuine double Polistes-Vespula sensitization and cross-reactivity.
Collapse
Affiliation(s)
- Helena Valero
- Allergy Department, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Luengo
- Allergy Department, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Allergy Research Unit, Allergy Department, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victoria Cardona
- Allergy Department, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Allergy Research Unit, Allergy Department, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Pereira
- Allergy Department, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Moises Labrador-Horrillo
- Allergy Department, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Allergy Research Unit, Allergy Department, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain;
| |
Collapse
|
4
|
Blank S, Korošec P, Slusarenko BO, Ollert M, Hamilton RG. Venom Component Allergen IgE Measurement in the Diagnosis and Management of Insect Sting Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)00773-6. [PMID: 39097146 DOI: 10.1016/j.jaip.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Accurate identification of allergy-eliciting stinging insect(s) is essential to ensuring effective management of Hymenoptera venom-allergic individuals with venom-specific immunotherapy. Diagnostic testing using whole-venom extracts with skin tests and serologic-based analyses remains the first level of discrimination for honeybee versus vespid venom sensitization in patients with a positive clinical history. As a second-level evaluation, serologic testing using molecular venom allergens can further discriminate genuine sensitization (honeybee venom: Api m 1, 3, 4, and 10 vs yellow jacket venom/Polistes dominula venom Ves v 1/Pol d 1 and Ves v 5/Pol d 5) from interspecies cross-reactivity (hyaluronidases [Api m 2, Ves v 2, and Pol d 2] and dipeptidyl peptidases IV [Api m 5, Ves v 3, and Pol d 3]). Clinical laboratories use a number of singleplex, oligoplex, and multiplex immunoassays that employ both extracted whole-venom and molecular venom allergens (highlighted earlier) for confirmation of allergic venom sensitization. Established quantitative singleplex autoanalyzers have general governmental regulatory clearance worldwide for venom-allergic patient testing with maximally achievable analytical sensitivity (0.1 kUA/L) and confirmed reproducibility (interassay coefficient of variation <10%). Emerging oligoplex and multiplex (fixed-panel) assays conserve on serum and are more cost-effective, but they need regulatory clearance in some countries and are prone to higher rates of detecting asymptomatic sensitization. Ultimately, the patient's clinical history, combined with proof of sensitization, is the final arbiter in the diagnosis of Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Benjamin O Slusarenko
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Centre, Odense Research Center for Anaphylaxis, Odense University Hospital, Odense, Denmark
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md.
| |
Collapse
|
5
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Feng X, Hu S. The mitogenome of a medically important paper wasp, Polistes hebraeus (Hymenoptera, Vespidae). Mitochondrial DNA B Resour 2022; 7:1157-1159. [PMID: 35783055 PMCID: PMC9246045 DOI: 10.1080/23802359.2022.2087560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polistes hebraeus (Smith) is a common paper wasp species of subfamily Polistinae. The clinical potential allergic reaction after stings and valuable venom components of P. hebraeus make it a medical importance species. Here, the mitochondrial genome of P. hebraeus was analyzed. The mitogenome was 19,262 bp in length including 22 transfer RNAs (tRNA) and 2 ribosomal RNAs (rRNA). The protein coding gene (PCGs) number and order are consistent with existing records of Polistidae. The nucleotide composition is AT: 84.5% and CG: 15.5% which are largely similar with other complete Polistidae mitogenome (15.27 ∼ 19.16%). The available mitogenome resources of Polistidae species and P. hebraeus were used to construct the phylogenetic tree. It showed that the genus Polistes could clearly seperated from Parapolybia, and the relationship in Polistes was consistent with previous studies. This mitogenome resource can contribute to further phylogenetic and taxonomic study on paper wasp.
Collapse
Affiliation(s)
- Xi Feng
- Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,The Fourth Hospital of Changsha, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan, China
| | - Sai Hu
- Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,The Fourth Hospital of Changsha, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan, China
| |
Collapse
|
7
|
Basophil activation test as alternative method to CAP-inhibition in patients with double sensitization to vespid venoms. Mol Immunol 2022; 149:59-65. [PMID: 35749834 DOI: 10.1016/j.molimm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Most patients with Hymenoptera venom allergy (HVA) to vespid venoms present double sensitization by specific IgE (sIgE)-mediated cross-reactivity. Thus, it is mandatory could discriminate between a true double and primary sensitization to implement an accurate venom-specific immunotherapy (VIT). To date, CAP-inhibition is the reference method in the diagnosis of cross-reactivity in double sensitized patients to vespid venoms, being the results obtained with the component resolved diagnostics (CRD) conflicting. For this, we have studied in a cohort of double sensitized patients to Vespula vulgaris (VV) and Polistes dominulus (PD) venoms (n = 40) the diagnostic accuracy of CRD using the CAP-inhibition as reference method, as well as to investigate whether basophil activation test (BAT) is an alternative method for inconclusive results obtained by CAP-inhibition. CAP-inhibition showed a sensitivity of 59.46 % in view of the indeterminate results; most patients had true double sensitization (54.5 %), followed by single sensitization to PD (27.27 %) and VV (18.18 %) venoms. CRD based on rVes v 5/rPol d 5 (or vice versa) ratio as well as whole extracts I3/I77 (or vice versa) ratio (specific IgE-I3 to VV/specific IgE-I77 to PD) showed a low diagnostic accuracy (AUC = 0.504, p = 0.974; AUC = 0.35, p = 0.235; respectively). BAT was determined in parallel with CAP-inhibition in 12 patients, presented higher sensitivity than CAP-inhibition (p = 0.021) and a positive agreement of 71.43 %. Likewise it was able to identify 100% of inconclusive results, showing a specificity of 83.3 %. Therefore, CRD is not a suitable method to distinguish monosensitization and BAT appears to be an appropriate method resolving indeterminate results from the gold standard method.
Collapse
|
8
|
Ruiz-Leon B, Serrano P, Vidal C, Moreno-Aguilar C. Management of Double Sensitization to Vespids in Europe. Toxins (Basel) 2022; 14:toxins14020126. [PMID: 35202153 PMCID: PMC8880449 DOI: 10.3390/toxins14020126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Wasp allergy with a diagnostic profile of double sensitizations to vespid venom is a frequent clinical problem in areas where different genera of wasps are present. Identification of the insect responsible for serious reactions poses a diagnostic challenge as the only effective treatment to date is immunotherapy based on the specific venom. In southern Europe, the double sensitization to Vespula and Polistes venoms is highly frequent. It has been shown that the major allergenic proteins (Phospholipase A1 and Antigen 5) share sequences across the different genera and species, which would be the cause of cross-reactivity. Additionally, the minor allergens (Dipeptidyl-peptidases, Vitellogenins) have been found to share partial sequence identity. Furthermore, venom contains other homologous proteins whose allergenic nature still remains to be clarified. The traditional diagnostic tools available are insufficient to discriminate between allergy to Vespula and Polistes in a high number of cases. IgE inhibition is the technique that best identifies the cross-reactivity. When a double sensitization has indeed been shown to exist or great uncertainty surrounds the primary sensitization, therapy with two venoms is advisable to guarantee the safety of the patient. In this case, a strategy involving alternate administration that combines effectiveness with efficiency is possible.
Collapse
Affiliation(s)
- Berta Ruiz-Leon
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
| | - Pilar Serrano
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
- Correspondence:
| | - Carmen Vidal
- Allergy Department of Complejo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Carmen Moreno-Aguilar
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
| |
Collapse
|
9
|
Nadhim LI. Investigation on the Effect of Age and Gender on Hypersensitivity Reactions due to Allergens Injection in Iraqi Population. ARCHIVES OF RAZI INSTITUTE 2022; 77:359-365. [PMID: 35891761 PMCID: PMC9288604 DOI: 10.22092/ari.2021.356679.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 06/15/2023]
Abstract
Hyperactivity of the immune system due to the insertion of allergens into the living body has been known as an allergic reaction. Some substances, such as pollen grains, insects' venom, house dust mite, foods, and medicines, can induce allergic responses. Therefore, this study was designed to shed light on the role of gender and age in allergic reactions resulting from some organic and chemical allergens. A total of 200 individuals participated in this study, including 70 males and 130 females. A skin test was performed by subcutaneously injecting allergens, namely amoxicillin, cefotaxine, gentamicin, Vespula spp., and Apis mellifera. All the chemicals were purchased from Sigma-Aldrich unless otherwise stated. The spot of injection was sterilized by ethyl alcohol (70%) and well dried; subsequently, 0.05 mL of each allergen (antigen) was injected via a 1-mL medical syringe. The results showed that 140 cases were allergic. Anti-cefotaxine occupied the highest percentage among the studied drug allergens. The highest percentage of males (37.5%) that were allergic was at the age range of 28-35 years, whereas the highest percentage of females (18.5%) that were allergic was at the age range of 17-27 years. Sensitivity to amoxicillin accounted for 12.5% of males at the age range of 28-37 years and 3.7% of females at the age range of 17-27 years. Gentamicin triggered the highest percentage of sensitivity in 12.5% and 7.4% of males and females aged 48-57 years and 17-27 years, respectively. The results showed that honey bees had the highest percentage of total sensitivity at 40%. The highest sensitivity rate stood at 37.5% in males at the age range of 28-37 years and 18.5% in females at the age range of 17-27 years. Wasps recorded a total sensitivity rate of 17.1%, with the highest percentage at 37.5% in males who were aged 17-27 years and 3.7% in females at the age ranges of 17-27 and 48-57 years. The results of the statistical analysis indicated that there were significant (P≤0.05) differences for all allergens that were studied regarding gender and age.
Collapse
Affiliation(s)
- Lateef I Nadhim
- Department of General Sciences, College of Basic Education, University of Mosul, Mosul, Iraq
| |
Collapse
|
10
|
Characterization of New Allergens from the Venom of the European Paper Wasp Polistes dominula. Toxins (Basel) 2021; 13:toxins13080559. [PMID: 34437431 PMCID: PMC8402607 DOI: 10.3390/toxins13080559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Discriminating Polistes dominula and Vespula spp. venom allergy is of growing importance worldwide, as systemic reactions to either species’ sting can lead to severe outcomes. Administering the correct allergen-specific immunotherapy is therefore a prerequisite to ensure the safety and health of venom-allergic patients. Component-resolved diagnostics of Hymenoptera venom allergy might be improved by adding additional allergens to the diagnostic allergen panel. Therefore, three potential new allergens from P. dominula venom—immune responsive protein 30 (IRP30), vascular endothelial growth factor C (VEGF C) and phospholipase A2 (PLA2)—were cloned, recombinantly produced and biochemically characterized. Sera sIgE titers of Hymenoptera venom-allergic patients were measured in vitro to assess the allergenicity and potential cross-reactivity of the venom proteins. IRP30 and VEGF C were classified as minor allergens, as sensitization rates lay around 20–40%. About 50% of P. dominula venom-allergic patients had measurable sIgE titers directed against PLA2 from P. dominula venom. Interestingly, PLA2 was unable to activate basophils of allergic patients, questioning its role in the context of clinically relevant sensitization. Although the obtained results hint to a questionable benefit of the characterized P. dominula venom proteins for improved diagnosis of venom-allergic patients, they can contribute to a deeper understanding of the molecular mechanisms of Hymenoptera venoms and to the identification of factors that determine the allergenic potential of proteins.
Collapse
|
11
|
Prevalence of Pol d 1 Sensitization in Polistes dominula Allergy and Its Diagnostic Role in Vespid Double-Positivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3781-3787. [PMID: 34146747 DOI: 10.1016/j.jaip.2021.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stings by Polistes species frequently cause allergic reactions. However, standard allergy diagnostics are often unable to differentiate between primary sensitization and cross-reactivity in case of Vespula/Polistes double-sensitization because antigen 5 is the only Polistes venom molecule currently available in diagnostics (Pol d 5). OBJECTIVE To evaluate the frequency of phospholipase A1 in Polistes venom allergy (Pol d 1) and its diagnostic role in vespid allergy. METHODS We performed component-resolved diagnostics in patients with vespid allergic reactions who were positive to Polistes venom. A prevalence analysis was performed and the diagnostic accuracy of Pol d 1 was evaluated to detect primary Polistes sensitization in double-sensitized patients. RESULTS Blood samples were collected from 132 patients. Pol d 1 was present in 97% to 100% of 128 Polistes-positive patients. It was frequently involved in case of positivity to a single Polistes molecule (48% in double- and 80% in mono-sensitized patients). Furthermore, Pol d 1 was positive in 95% of Pol d 5-negative subjects. The diagnostic accuracy of Pol d 1 was good (folded type: area under the curve = 87%; 82% sensitivity and 77% specificity at the best cutoff of 5.773), and even better when used combined with the whole extract ratio (area under the curve = 99%; 91% sensitivity and 100% specificity). CONCLUSIONS The study shows that Pol d 1 is the most frequent Polistes allergen in Italian patients. It can distinguish Polistes primary sensitizations with good diagnostic accuracy, which supports its use in clinical practice.
Collapse
|
12
|
Incorvaia C, Al‐Ahmad M, Ansotegui IJ, Arasi S, Bachert C, Bos C, Bousquet J, Bozek A, Caimmi D, Calderón MA, Casale T, Custovic A, De Blay F, Demoly P, Devillier P, Didier A, Fiocchi A, Fox AT, Gevaert P, Gomez M, Heffler E, Ilina N, Irani C, Jutel M, Karagiannis E, Klimek L, Kuna P, O'Hehir R, Kurbacheva O, Matricardi PM, Morais‐Almeida M, Mosges R, Novak N, Okamoto Y, Panzner P, Papadopoulos NG, Park H, Passalacqua G, Pawankar R, Pfaar O, Schmid‐Grendelmeier P, Scurati S, Tortajada‐Girbés M, Vidal C, Virchow JC, Wahn U, Worm M, Zieglmayer P, Canonica GW. Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model. Allergy 2021; 76:1041-1052. [PMID: 32869882 DOI: 10.1111/all.14575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
Abstract
The introduction of personalized medicine (PM) has been a milestone in the history of medical therapy, because it has revolutionized the previous approach of treating the disease with that of treating the patient. It is known today that diseases can occur in different genetic variants, making specific treatments of proven efficacy necessary for a given endotype. Allergic diseases are particularly suitable for PM, because they meet the therapeutic success requirements, including a known molecular mechanism of the disease, a diagnostic tool for such disease, and a treatment blocking the mechanism. The stakes of PM in allergic patients are molecular diagnostics, to detect specific IgE to single-allergen molecules and to distinguish the causative molecules from those merely cross-reactive, pursuit of patient's treatable traits addressing genetic, phenotypic, and psychosocial features, and omics, such as proteomics, epi-genomics, metabolomics, and breathomics, to forecast patient's responsiveness to therapies, to detect biomarker and mediators, and to verify the disease control. This new approach has already improved the precision of allergy diagnosis and is likely to significantly increase, through the higher performance achieved with the personalized treatment, the effectiveness of allergen immunotherapy by enhancing its already known and unique characteristics of treatment that acts on the causes.
Collapse
Affiliation(s)
| | - Mona Al‐Ahmad
- Microbiology Department Faculty of Medicine Kuwait University Kuwait
- Drug Allergy Unit Department of Allergy Al‐Rashed Allergy Center Kuwait
| | | | - Stefania Arasi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
- Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Catherine Bos
- Stallergenes Greer Medical Affairs Department Antony France
| | - Jean Bousquet
- University Hospital Montpellier France – MACVIA‐France Montpellier France
| | - Andrzéj Bozek
- Clinical Department of Internal Disease, Dermatology and Allergology Medical University of Silesia Katowice Poland
| | - Davide Caimmi
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
| | - Moises A. Calderón
- Imperial College London – National Heart and Lung Institute Royal Brompton Hospital NHS London UK
| | - Thomas Casale
- Division of Allergy/Immunology University of South Florida Tampa FL USA
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy Institute of Inflammation and Repair University of Manchester and University Hospital of South Manchester Manchester UK
| | - Frédéric De Blay
- Allergy Division Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | - Pascal Demoly
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
- Sorbonne Université UMR‐S 1136 INSERM IPLESP EPAR Team Paris France
| | - Philippe Devillier
- Laboratoire de Recherche en Pharmacologie Respiratoire Pôle des Maladies des Voies Respiratoires Hôpital Foch Université Paris‐Saclay Suresnes France
| | - Alain Didier
- Respiratory Disease Dept Larrey Hospital University Hospital of Toulouse Paul Sabatier University Toulouse France
| | - Alessandro Fiocchi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Adam T. Fox
- Department of Paediatric Allergy Guy's & St Thomas' Hospitals NHS Foundation Trust London UK
| | - Philippe Gevaert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
| | | | - Enrico Heffler
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| | - Natalia Ilina
- Federal Institute of Immunology of Russia Moscow Russia
| | - Carla Irani
- Department of Internal Medicine and Clinical Immunology Faculty of Medicine Hotel Dieu de France Hospital Saint Joseph University Beirut Lebanon
| | - Marek Jutel
- Department of Clinical Immunology Wrocław Medical University Wrocław Poland
| | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy Barlicki University Hospital Medical University of Lodz Lodz Poland
| | - Robin O'Hehir
- Alfred Hospital and Monash University Melbourne Australia
| | - Oxana Kurbacheva
- National Research Center – Institute of Immunology Federal Medical‐Biological Agency of Russia Moscow Russia
| | - Paolo M. Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Mario Morais‐Almeida
- Immunoallergy Department of CUF‐Descobertas Hospital Lisbon Portugal
- CUF‐Infante Santo Hospital Lisbon Portugal
| | - Ralph Mosges
- Faculty of Medicine Institute of Medical Statistics and Computational Biology University of Cologne Cologne Germany
- CRI – Clinical Research International Ltd. Cologne Germany
| | - Natalija Novak
- Department of Dermatology and Allergy University Hospital Bonn Bonn Germany
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology Chiba University Hospital Chiba Japan
| | - Petr Panzner
- Department of Immunology and Allergology Faculty of Medicine in Pilsen Charles University in Prague Pilsen Czech Republic
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine Royal Manchester Children's Hospital University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic Athens General Children's Hospital "P&A Kyriakou" University of Athens Athens Greece
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases Ospedale Policlino San Martino – University of Genoa Genoa Italy
| | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | | | - Silvia Scurati
- Stallergenes Greer Medical Affairs Department Antony France
| | - Miguel Tortajada‐Girbés
- Pediatric Pulmonology and Allergy Unit Department of Pediatrics Dr. Peset University Hospital Valencia Spain
- Department of Pediatrics, Obstetrics and Gynecology University of Valencia Valencia Spain
- IVI Foundation Valencia Spain
| | - Carmen Vidal
- Allergy Service Complejo Hospitalario Universitario de Santiago Santiago de Compostela Spain
| | - J. Christian Virchow
- Department of Pneumology/Intensive Care Medicine University of Rostock Rostock Germany
| | - Ulrich Wahn
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Margitta Worm
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | | | - Giorgio W. Canonica
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| |
Collapse
|
13
|
Blank S, Grosch J, Ollert M, Bilò MB. Precision Medicine in Hymenoptera Venom Allergy: Diagnostics, Biomarkers, and Therapy of Different Endotypes and Phenotypes. Front Immunol 2020; 11:579409. [PMID: 33193378 PMCID: PMC7643016 DOI: 10.3389/fimmu.2020.579409] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic reactions to stings of Hymenoptera species may be severe and are potentially fatal deviations of the immunological response observed in healthy individuals. However, venom-specific immunotherapy (VIT) is an immunomodulatory approach able to cure venom allergy in the majority of affected patients. An appropriate therapeutic intervention and the efficacy of VIT not only depend on a conclusive diagnosis, but might also be influenced by the patient-specific manifestation of the disease. As with other diseases, it should be borne in mind that there are different endotypes and phenotypes of venom allergy, each of which require a patient-tailored disease management and treatment scheme. Reviewed here are different endotypes of sting reactions such as IgE-mediated allergy, asymptomatic sensitization or a simultaneous presence of venom allergy and mast cell disorders including particular considerations for diagnosis and therapy. Additionally, phenotypical manifestations of venom allergy, as e.g. differences in age of onset and disease severity, multiple sensitization or patients unsusceptible to therapy, are described. Moreover, biomarkers and diagnostic strategies that might reflect the immunological status of the patient and their value for therapeutic guidance are discussed. Taken together, the increasing knowledge of different disease manifestations in venom hypersensitivity and the growing availability of diagnostic tools open new options for the classification of venom allergy and, hence, for personalized medical approaches and precision medicine in Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Maria Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.,Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Ancona, Italy
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Component-resolved diagnostics (CRD) is a new tool aiming at detecting IgE-mediated sensitizations against individual, relevant allergens. Here, we discuss recent literature on molecular diagnosis in the field of Hymenoptera venom allergy (HVA) as well as CRD strengths and weaknesses. RECENT FINDINGS CRD, using single molecules or panels of allergens, may discriminate between primary sensitization and cross-reactivity in patients with double/multiple positivity in diagnostic tests with whole extracts, allowing the specialist to choose the most suitable venom for specific immunotherapy (VIT), avoiding unnecessary VIT and reducing the risk of side effects. Future availability of the cross-reactive recombinant pairs of allergens of different species may further increase the diagnostic performance. CRD may be useful in patients with negative allergy tests and a proven history of a previous systemic reaction, including those with mast cell disorders, who could benefit from VIT. In honeybee venom allergy, different sensitization profiles have been identified, which could be associated with a greater risk of VIT failure or treatment side effects. SUMMARY CRD is undoubtedly an innovative diagnostic method that leads to a more precise definition of the sensitization profile of the HVA patient. Together with a better knowledge of the molecular composition of different venom extracts, CRD may contribute to optimize patient-tailored therapy.
Collapse
|
15
|
Blank S, Bazon ML, Grosch J, Schmidt-Weber CB, Brochetto-Braga MR, Bilò MB, Jakob T. Antigen 5 Allergens of Hymenoptera Venoms and Their Role in Diagnosis and Therapy of Venom Allergy. Curr Allergy Asthma Rep 2020; 20:58. [PMID: 32647993 PMCID: PMC7347709 DOI: 10.1007/s11882-020-00954-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Stings of Hymenoptera of the superfamily Vespoidea such as yellow jackets, paper wasps or stinging ants are common triggers for severe and even fatal allergic reactions. Antigen 5 allergens are potent allergens in the majority of these venoms with major importance for diagnosis and therapy. Reviewed here are the characteristics of antigen 5 allergens, their role in component-resolved diagnostics as well as current limitations of the available diagnostics for proper therapeutic decisions. RECENT FINDINGS Antigens 5 are proteins of unknown function in Hymenoptera venoms with high allergenic potency. They represent key elements in component-resolved diagnosis to discriminate between honeybee and vespid venom allergy. However, due to their pronounced cross-reactivity, there are remaining diagnostic and therapeutic challenges that have to be addressed. Antigens 5 are highly relevant venom allergens of the Vespoidea superfamily. Although their use in component-resolved diagnosis facilitates dissection of cross-reactivity and primary allergy in double sensitization to honeybee and vespid venom, new diagnostic concepts are needed to discriminate between allergies to different vespid species.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany.
| | - Murilo Luiz Bazon
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
- Department of General and Applied Biology, Biosciences Institute, Sao Paulo State University, Rio Claro, São Paulo, Brazil
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Márcia Regina Brochetto-Braga
- Department of General and Applied Biology, Biosciences Institute, Sao Paulo State University, Rio Claro, São Paulo, Brazil
| | - Maria Beatrice Bilò
- Department of Clinical and Molecular Sciences, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Polytechnic University of Marche, Ancona, Italy
| | - Thilo Jakob
- Experimental Dermatology and Allergy Research Group, Department of Dermatology and Allergology, Justus-Liebig-University Gießen, Giessen, Germany
| |
Collapse
|
16
|
Shedding Light on the Venom Proteomes of the Allergy-Relevant Hymenoptera Polistes dominula (European Paper Wasp) and Vespula spp. (Yellow Jacket). Toxins (Basel) 2020; 12:toxins12050323. [PMID: 32422898 PMCID: PMC7291082 DOI: 10.3390/toxins12050323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/25/2023] Open
Abstract
Allergic reactions to stings of Hymenoptera species can have serious or even fatal consequences. If the identification of the culprit insect is possible, venom-specific immunotherapy effectively cures Hymenoptera venom allergies. Although component-resolved diagnostics has strongly evolved in recent years, the differentiation between allergies to closely related species such as Polistes dominula and Vespula spp. is still challenging. In order to generate the basis for new diagnostic and therapeutic strategies, this study aims at resolving the venom proteomes (venomes) of these species. The venoms of P. dominula and Vespula spp. (V. germanica, V. vulgaris) were analyzed by liquid chromatography-mass spectrometry. Resulting proteins were characterized regarding their function, localization and biochemical properties. The analyses yielded 157 proteins in Vespula spp. and 100 in P. dominula venom; 48 proteins, including annotated allergens, were found in both samples. In addition to a variety of venom trace molecules, new allergen candidates such as icarapin-like protein and phospholipase A2 were identified. This study elucidates the venomes of closely related allergy-eliciting Hymenoptera species. The data indicates that relying on marker allergens to differentiate between P. dominula and Vespula spp. venom allergy is probably insufficient and that strategies using cross-reactive major allergens could be more promising.
Collapse
|
17
|
A WAO - ARIA - GA 2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J 2020; 13:100091. [PMID: 32180890 PMCID: PMC7062937 DOI: 10.1016/j.waojou.2019.100091] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precision allergy molecular diagnostic applications (PAMD@) is increasingly entering routine care. Currently, more than 130 allergenic molecules from more than 50 allergy sources are commercially available for in vitro specific immunoglobulin E (sIgE) testing. Since the last publication of this consensus document, a great deal of new information has become available regarding this topic, with over 100 publications in the last year alone. It thus seems quite reasonable to publish an update. It is imperative that clinicians and immunologists specifically trained in allergology keep abreast of the new and rapidly evolving evidence available for PAMD@. PAMD@ may initially appear complex to interpret; however, with increasing experience, the information gained provides relevant information for the allergist. This is especially true for food allergy, Hymenoptera allergy, and for the selection of allergen immunotherapy. Nevertheless, all sIgE tests, including PAMD@, should be evaluated within the framework of a patient's clinical history, because allergen sensitization does not necessarily imply clinical relevant allergies.
Collapse
|
18
|
Ansotegui IJ, Melioli G, Canonica GW, Caraballo L, Villa E, Ebisawa M, Passalacqua G, Savi E, Ebo D, Gómez RM, Luengo Sánchez O, Oppenheimer JJ, Jensen-Jarolim E, Fischer DA, Haahtela T, Antila M, Bousquet JJ, Cardona V, Chiang WC, Demoly PM, DuBuske LM, Ferrer Puga M, Gerth van Wijk R, González Díaz SN, Gonzalez-Estrada A, Jares E, Kalpaklioğlu AF, Kase Tanno L, Kowalski ML, Ledford DK, Monge Ortega OP, Morais Almeida M, Pfaar O, Poulsen LK, Pawankar R, Renz HE, Romano AG, Rosário Filho NA, Rosenwasser L, Sánchez Borges MA, Scala E, Senna GE, Sisul JC, Tang ML, Thong BYH, Valenta R, Wood RA, Zuberbier T. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J 2020; 13:100080. [PMID: 32128023 PMCID: PMC7044795 DOI: 10.1016/j.waojou.2019.100080] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, testing for immunoglobulin E (IgE) sensitization is the cornerstone of diagnostic evaluation in suspected allergic conditions. This review provides a thorough and updated critical appraisal of the most frequently used diagnostic tests, both in vivo and in vitro. It discusses skin tests, challenges, and serological and cellular in vitro tests, and provides an overview of indications, advantages and disadvantages of each in conditions such as respiratory, food, venom, drug, and occupational allergy. Skin prick testing remains the first line approach in most instances; the added value of serum specific IgE to whole allergen extracts or components, as well as the role of basophil activation tests, is evaluated. Unproven, non-validated, diagnostic tests are also discussed. Throughout the review, the reader must bear in mind the relevance of differentiating between sensitization and allergy; the latter entails not only allergic sensitization, but also clinically relevant symptoms triggered by the culprit allergen.
Collapse
Key Words
- AAAAI, American Academy of Allergy Asthma and Immunology
- ABA, Allergen Bead Array
- ACAAI, American College of Allergy Asthma and Immunology
- AEC, Allergen Exposure Chambers
- AIT, allergen immunotherapy
- AP, Alkaline Phosphatase
- AU/mL, Allergenic Units milliLiter
- Allergy
- Anti-IgE, Antibody against IgE
- BAT, Basophil Activation Test
- BAU/mL, Biologic Allergenic Units milliLiter
- CBA, Cytometric Bead Array
- CCD, Cross-reactive Carbohydrate Determinants
- CDER, Center for Drug Evaluation and Research (USA)
- CL, Chemiluminescence
- CaFE, Calibrated Fluorescence Enhancement
- DBPCFC, Double-Blind Placebo-Controlled Food Challenge
- Diagnostic strategies
- EAACI, European Academy of Allergy and Immunology
- EIA, Enzyme Immune Assay
- ELISA, Enzyme Linked Immuno Sorbent Analysis
- EMEA, European MEdicine Agencies
- ENPP-3, EctoNucleotide Pyrophosphatase/Phosphodiesterase 3
- FACS, Fluorescence-Activated Cell Sorting
- FDA, Food and Drug Administration (U.S. Department of Health and Human Services)
- FEIA, Fluorescent Enzyme Immunoassays
- FcεRI, High affinity IgE receptor
- H1, Histamine 1 receptor
- H2, Histamine 2 receptor
- HPO, Horseradish Peroxidase
- IDT, Intradermal Test
- ISAC, Immuno-Solid phase Allergen Chip
- IUIS, International Union of Immunological Societies
- IVD, in vitro diagnostic tool
- IgE
- IgE, immunoglobulin E
- In vitro tests
- LAMP-3, Lysosomal-Associated Membrane Protein
- MBAD, Molecule Based Allergy Diagnostics
- MRGPRX2, Mas-related G protein receptor 2
- NIH, National Institutes of Health (USA)
- NMBAs, NeuroMuscular Blocking Agents
- NPA, Negative Percent Agreement
- NSAIDs, Non-Steroidal Anti-Inflammatory Drugs
- PPA, Positive Percent Agreement
- PPT, Prick-Prick Test
- RAST, Radio Allergo Sorbent Test
- SCAR, severe cutaneous adverse drug reactions
- SPT, Skin prick test
- Skin tests
- kUA/L, kilo Units of Allergen/Liter for allergen-specific IgE antibody assays
- mAb, Monoclonal Antibody
- pNPP, p-Nitrophenylphosphate
- sIgE, specific IgE
- w/v, weight /volume
Collapse
Affiliation(s)
| | - Giovanni Melioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Elisa Villa
- Azienda Sanitaria Locale di Vercelli, S.C. Pneumologia, Vercelli, Italia
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | | | - Didier Ebo
- Department of Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp University, Department Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | | | - Olga Luengo Sánchez
- Allergy Section, Department of Internal Medicine, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Erika Jensen-Jarolim
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - David A. Fischer
- Fischer Medicine Professional Corporation, Barrie, Ontario, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland
| | | | - Jean J. Bousquet
- MACVIA-France, Montpellier, France
- INSERM, Villejuif, France
- Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France
- Euforea, Brussels, Belgium
- CHU Montpellier, France
| | - Victoria Cardona
- Universitat Autónoma de Barcelona, Hospital Universitario Vall d'Hebron, Servicio de Medicina Interna, Sección de Alergología, Barcelona, Spain
| | - Wen Chin Chiang
- Mount Elizabeth Medical Centre, Chiang Children's Allergy & Asthma Clinic, Singapore, Singapore
| | - Pascal M. Demoly
- University Hospital Montpellier, Montpellier, France
- Sorbonne Université, Paris, France
| | | | - Marta Ferrer Puga
- The Unidad de Educación Médica, Department of Medical Education, School of Medicine, Clinica Universitad de Navarra, Navarra, Spain
| | | | | | | | | | | | | | - Marek L. Kowalski
- Faculty of Medicine, Department of Clinical Immunology & Allergy, Medical University of Łódź, Łódź, Poland
| | | | | | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Lars K. Poulsen
- Gentofte University Hospital, Lab for Allergology, Allergy Clinic, Hellerup, Denmark
| | - Ruby Pawankar
- Nippon Medical School, Dept. of Otolaryngology, Tokyo, Japan
| | - Harald E. Renz
- University Hospital GI & MR GmbH, Institute of Laboratory Medicine & Pathology, Standort Marburg, Marburg, Germany
| | | | | | - Lanny Rosenwasser
- University of Missouri at Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Enrico Scala
- Experimental Allergy Unit, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | - Mimi L.K. Tang
- Royal Children's Hospital, Department of Allergy & Immunology, Parkville, Victoria, Australia
| | - Bernard Yu-Hor Thong
- Tan Tock Seng Hospital, Deptartment of Rheumatology, Allergy & Immunology, Singapore, Singapore
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert A. Wood
- Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Torsten Zuberbier
- Campus Charite Mitte, Klinik fur Dermatologie & Allergologie, Berlin, Germany
| |
Collapse
|
19
|
|
20
|
Abstract
Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.
Collapse
|
21
|
Quercia O, Cova V, Martini M, Cortellini G, Murzilli F, Bignardi D, Cilia M, Scarpa A, Bilò M. CAP-Inhibition, Molecular Diagnostics, and Total IgE in the Evaluation of Polistes and Vespula Double Sensitization. Int Arch Allergy Immunol 2018; 177:365-369. [DOI: 10.1159/000491939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
|
22
|
Blank S, Bilò MB, Ollert M. Component-resolved diagnostics to direct in venom immunotherapy: Important steps towards precision medicine. Clin Exp Allergy 2018; 48:354-364. [PMID: 29331065 DOI: 10.1111/cea.13090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stings of Hymenoptera can induce IgE-mediated systemic and even fatal allergic reactions. Venom-specific immunotherapy (VIT) is the only disease-modifying and curative treatment of venom allergy. However, choosing the correct venom for VIT represents a necessary prerequisite for efficient protection against further anaphylactic sting reactions after VIT. In the past, therapeutic decisions based on the measurement of specific IgE (sIgE) levels to whole venom extracts were not always straightforward, especially when the patient was not able to identify the culprit insect. In the last years, the increasing knowledge about the molecular structure and relevance of important venom allergens and their availability as recombinant allergens, devoid of cross-reactive carbohydrate determinants, resulted in the development of an advanced component-resolved diagnostics (CRD) approach in venom allergy. Already to date, CRD has increased the sensitivity of sIgE detection and enabled the discrimination between primary sensitization and cross-reactivity, particularly in patients with sensitization to both honeybee and vespid venom. Hence, CRD in many patients improves the selection of the appropriate immunotherapeutic intervention. Moreover, the detailed knowledge about sensitization profiles on a molecular level might open new options to identify patients who are at increased risk of side-effects or not to respond to immunotherapy. Therefore, increasing potential of CRD becomes evident, to direct therapeutic decisions in a personalized and patient-tailored manner. Reviewed here are the state of the art options, recent developments and future perspectives of CRD of Hymenoptera venom allergy.
Collapse
Affiliation(s)
- S Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Ancona, Italy
| | - M Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Incorvaia C, Mauro M, Gritti BL, Makri E, Ridolo E. Venom immunotherapy in patients with allergic reactions to insect stings. Expert Rev Clin Immunol 2017; 14:53-59. [PMID: 29202591 DOI: 10.1080/1744666x.2018.1413350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Allergy to Hymenoptera (Apis mellifera, Vespula species, Polistes species, Vespa crabro) venom can be safely and effectively treated by venom immunotherapy (VIT), which in the 40 years since its introduction has been able to prevent reactions to stings, and to treatment as well, though systemic reactions, occasionally severe, are possible. Areas covered: We reviewed the recent literature on VIT by searching in PubMed for the terms 'venom immunotherapy' and 'Hymenoptera venom immunotherapy' to highlight the current status of VIT and the likely development in the coming years. Expert commentary: VIT, provided the correct choice of the venom and adequate venom preparations and maintenance doses are used, is a treatment of great value in preventing systemic reactions to Hymenoptera stings. A 5-year duration ensures a prolonged tolerance to stings following VIT discontinuation, unless patients suffer from mastocytosis. In fact, due to reports of fatal reactions after stopping VIT, patients with mastocytosis, or with very severe reactions to stings, need an indefinite duration of treatment.
Collapse
Affiliation(s)
| | - Marina Mauro
- b Department of Clinical & Experimental Medicine , University of Parma , Parma , Italy
| | - Bruna L Gritti
- a Cardiac/Pulmonary Rehabilitation , ASST Pini/CTO , Milan , Italy
| | - Eleni Makri
- a Cardiac/Pulmonary Rehabilitation , ASST Pini/CTO , Milan , Italy
| | - Erminia Ridolo
- c Allergy Unit , Sant'Anna Hospital, ASST Lariana , Como , Italy
| |
Collapse
|
24
|
Savi E, Incorvaia C, Boni E, Mauro M, Peveri S, Pravettoni V, Quercia O, Reccardini F, Montagni M, Pessina L, Ridolo E. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study. PLoS One 2017; 12:e0180270. [PMID: 28686638 PMCID: PMC5501507 DOI: 10.1371/journal.pone.0180270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. METHODS We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). RESULTS The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. CONCLUSION The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.
Collapse
Affiliation(s)
- Eleonora Savi
- Allergy Dept. Unit, G. Da Saliceto Hospital, AUSL, Piacenza, Italy
| | | | - Elisa Boni
- Allergy Unit, Sant’Anna Hospital, ASST Lariana, Como, Italy
| | - Marina Mauro
- Allergy Unit, Sant’Anna Hospital, ASST Lariana, Como, Italy
| | - Silvia Peveri
- Allergy Dept. Unit, G. Da Saliceto Hospital, AUSL, Piacenza, Italy
| | - Valerio Pravettoni
- Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oliviero Quercia
- Unità ad Alta Specializzazione di Allergologia, Ospedale di Faenza (RA), Faenza, Italy
| | - Federico Reccardini
- Azienda Sanitaria Universitaria Integrata Udine, SOC Pneumologia Fisiopatologia Respiratoria, Udine, Italy
| | | | - Laura Pessina
- Cardiac/Pulmonary Rehabilitation, ASST Gaetano Pini/CTO, Milan, Italy
| | - Erminia Ridolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|