1
|
An N, Zhang Y, Xie J, Li J, Lin J, Li Q, Wang Y, Liu Y, Yang Y. Study on the involvement of microglial S100A8 in neuroinflammation and microglia activation during migraine attacks. Mol Cell Neurosci 2024; 130:103957. [PMID: 39111720 DOI: 10.1016/j.mcn.2024.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1β, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.
Collapse
Affiliation(s)
- Ning An
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yingying Zhang
- Department of Neurology, the forth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinding Xie
- Department of chirurgery, Maternal and Child Health Care Hospital, Mudanjiang, Heilongjiang, China
| | - Jingchao Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jing Lin
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuyan Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yating Wang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yang Liu
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yindong Yang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
2
|
Piriyaprasath K, Kakihara Y, Hasegawa M, Iwamoto Y, Hasegawa Y, Fujii N, Yamamura K, Okamoto K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024; 16:2868. [PMID: 39275184 PMCID: PMC11397166 DOI: 10.3390/nu16172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This narrative review provides an overview of current knowledge on the impact of nutritional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs). Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation revealed that the causal links between nutritional changes and craniofacial pain remain unclear. However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals, polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines, and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins, minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the 38 articles published since 2013. Our investigation indicates that current evidence is insufficient to assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic intervention in TMDs. Further support from longitudinal and randomized controlled studies and well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical intervention and understand their underlying mechanisms in TMDs.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoko Hasegawa
- Division of Comprehensive Prosthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noritaka Fujii
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
3
|
Takeda M, Sashide Y, Toyota R, Ito H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024; 29:3957. [PMID: 39203035 PMCID: PMC11357422 DOI: 10.3390/molecules29163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (Y.S.); (R.T.); (H.I.)
| | | | | | | |
Collapse
|
4
|
Watanuki Y, Yajima S, Sashide Y, Takeda M. Effect of theanine on the hyperexcitability of trigeminal secondary nociceptive neurons following orofacial inflammation in rats. Eur J Oral Sci 2024; 132:e12961. [PMID: 37984410 DOI: 10.1111/eos.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
The present in vivo study investigated whether systemic administration of theanine attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with hyperalgesia. Complete Freund's adjuvant (CFA) was injected into the whisker pads of 24 rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was statistically significantly lower in CFA-inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels after 2 days of theanine administration. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to mechanical stimuli in anesthetized CFA-inflamed rats was statistically significantly lower after two days of theanine administration. In addition, the increased mean spontaneous discharge of SpVc WDR neurons in CFA-inflamed rats statistically significantly decreased after theanine administration. Similarly, theanine restored the expanded mean receptive field size in CFA-inflamed rats to control levels. Taken together, these results suggest that administration of theanine attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons. These findings support the potential of theanine as a therapeutic agent in complementary alternative medicine strategies to prevent inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yui Watanuki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Sora Yajima
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
5
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Itou H, Toyota R, Takeda M. Phytochemical quercetin alleviates hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia comparable to NSAIDs. Mol Pain 2022; 18:17448069221108971. [PMID: 35734996 PMCID: PMC9234920 DOI: 10.1177/17448069221108971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quercetin is a flavonoid that is widely found in fruits and vegetables. Quercetin inhibits cyclooxygenase-2 and modulates voltage-gated ion channels, however, its effect on nociceptive neuron-associated inflammatory hyperalgesia remains unknown. The present study investigated under in vivo conditions whether systemic administration of quercetin attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with mechanical hyperalgesia and compared its effect to the non-steroidal anti-inflammatory drug, diclofenac. Complete Freund's adjuvant was injected into the whisker pads of rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was significantly lower in inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels 2 days after administration of quercetin or diclofenac. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to both non-noxious and noxious mechanical stimuli in inflamed rats was significantly decreased after quercetin or diclofenac administration under combination of three anesthetic agents (medetomidine, midazolam and butorphanol). In addition, the increased mean spontaneous discharge of SpVc WDR neurons in inflamed rats significantly decreased after quercetin or diclofenac administration. Similarly, quercetin or diclofenac restored the expanded mean receptive field size in inflamed rats to control levels. In this study, the combination of three anesthetic agents did not result in any obvious "noxious pinch-evoked after discharges" in CFA inflamed day 2 rat as described previously in pentobarbital-anesthetized rats. Together, these results suggest that administration of quercetin attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons via inhibition of the peripheral cyclooxygenase-2 signaling cascade and voltage-gated ion channels. These findings support the proposed potential of quercetin as a therapeutic agent in complementary alternative medicine strategies for preventing trigeminal inflammatory mechanical hyperalgesia.
Collapse
Affiliation(s)
- Haruka Itou
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Kanagawa, Japan
| |
Collapse
|
7
|
Okamoto K, Hasegawa M, Piriyaprasath K, Kakihara Y, Saeki M, Yamamura K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:231-241. [PMID: 34815817 PMCID: PMC8593658 DOI: 10.1016/j.jdsr.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic pain in temporomandibular disorder (TMD) is a common health problem. Cumulating evidence indicates that the etiology of TMD pain is complex with multifactorial experience that could hamper the developments of treatments. Preclinical research is a resource to understand the mechanism for TMD pain, whereas limitations are present as a disease-specific model. It is difficult to incorporate multiple risk factors associated with the etiology that could increase pain responses into a single animal. This article introduces several rodent models which are often employed in the preclinical studies and discusses their validities for TMD pain after the elucidations of the neural mechanisms based on the clinical reports. First, rodent models were classified into two groups with or without inflammation in the deep craniofacial tissues. Next, the characteristics of each model and the procedures to identify deep craniofacial pain were discussed. Emphasis was directed on the findings of the effects of chronic psychological stress, a major risk factor for chronic pain, on the deep craniofacial nociception. Preclinical models have provided clinically relevant information, which could contribute to better understand the basis for TMD pain, while efforts are still required to bridge the gap between animal and human studies.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan.,Division of Dental Clinical Education, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| |
Collapse
|
8
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
9
|
Okubo N, Ishikawa H, Sano R, Shimazu Y, Takeda M. Effect of resveratrol on the hyperexcitability of nociceptive neurons associated with ectopic hyperalgesia induced by experimental tooth movement. Eur J Oral Sci 2020; 128:275-283. [PMID: 33856731 DOI: 10.1111/eos.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
The present study investigated whether, under in vivo conditions, systemic administration of resveratrol attenuates the experimental tooth movement-induced ectopic hyperalgesia associated with hyperexcitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) neurons. The threshold of escape from mechanical stimulation applied to the ipsilateral whisker pad in rats exposed to experimental tooth movement was significantly lower than seen in control rats from day 1 to 3 following movement of the right maxillary first molar tooth. The lowered mechanical threshold in the rats exposed to experimental tooth movement had almost returned to the level of sham-treated naïve rats at day 3 following administration of resveratrol. The mean mechanical threshold of nociceptive SpVc neurons was significantly lower after experimental tooth movement but the lower threshold could be reversed by administration of resveratrol. The higher discharge frequency of nociceptive SpVc neurons for noxious mechanical stimuli observed in rats exposed to experimental tooth movement was statistically significantly lower following resveratrol administration. These results suggest that resveratrol attenuates experimental tooth movement-induced mechanical ectopic hyperalgesia via suppression of peripheral and/or central sensitization. These findings support the idea that resveratrol, a complementary alternative medicine, is a potential therapeutic agent for the prevention of experimental tooth movement-induced ectopic hyperalgesia.
Collapse
Affiliation(s)
- Nao Okubo
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Haruna Ishikawa
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Rena Sano
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
10
|
Pecikoza U, Tomić M, Micov A, Vuković M, Stepanović-Petrović R. Eslicarbazepine acetate interacts in a beneficial manner with standard and alternative analgesics to reduce trigeminal nociception. Psychopharmacology (Berl) 2020; 237:1435-1446. [PMID: 32025776 DOI: 10.1007/s00213-020-05470-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE Acute pain states in the trigeminal region (headaches, dental pain) fall into the most prevalent painful conditions. Standard analgesics (paracetamol/NSAIDs) represent the cornerstone of their treatment, whereas triptans are primarily used in migraine attacks. Due to limited efficacy and/or side effects of current treatments, identifying favorable combinations of available drugs is justified. OBJECTIVES Eslicarbazepine acetate (ESL) is a novel antiepileptic drug whose effectiveness against trigeminal pain was recently demonstrated. Here, we examined the interactions between ESL and several standard/alternative analgesics (paracetamol, propyphenazone, naproxen, zolmitriptan, and metoclopramide) in a model of trigeminal pain. METHODS The antinociceptive effects of orally administered ESL, standard/alternative analgesics, and two-drug ESL-analgesic combinations were examined in the orofacial formalin test in mice. The type of interaction between drugs was determined by isobolographic analysis. RESULTS ESL, analgesics, and two-drug ESL-analgesic combinations significantly and dose-dependently reduced nociceptive behaviour in the second, inflammatory phase of the test. Isobolographic analysis revealed that ESL interacted additively with paracetamol/propyphenazone/zolmitriptan and synergistically with naproxen/metoclopramide (with about a 4-fold and 3-fold reduction of doses in the ESL-naproxen and ESL-metoclopramide combination, respectively). CONCLUSIONS ESL interacted in a beneficial manner with several analgesics that are used for trigeminal pain treatment, producing synergistic interactions with naproxen/metoclopramide and additive interactions with paracetamol/propyphenazone/zolmitriptan. Our results suggest that combining ESL with analgesics could theoretically enable the use of lower doses of individual drugs for achieving pain relief.
Collapse
Affiliation(s)
- Uroš Pecikoza
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P.O. Box 146, Belgrade, 11221, Serbia.
| | - Maja Tomić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P.O. Box 146, Belgrade, 11221, Serbia
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P.O. Box 146, Belgrade, 11221, Serbia
| | - Milja Vuković
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P.O. Box 146, Belgrade, 11221, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, P.O. Box 146, Belgrade, 11221, Serbia
| |
Collapse
|
11
|
Takeda M, Shimazu Y. Modulatory mechanism underlying how dietary constituents attenuate orofacial pain. J Oral Sci 2020; 62:140-143. [DOI: 10.2334/josnusd.19-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University
| |
Collapse
|
12
|
Arakawa S, Inoue M, Kinouchi R, Morizumi S, Yamaguchi M, Shimazu Y, Takeda M. Dietary constituent genistein inhibits the hyperexcitability of trigeminal nociceptive neurons associated with mechanical hyperalgesia following orofacial inflammation. J Oral Biosci 2019; 61:215-220. [DOI: 10.1016/j.job.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023]
|
13
|
Ikeda A, Muroki A, Suzuki C, Shimazu Y, Takeda M. Resolvin D1 suppresses inflammation-induced hyperexcitability of nociceptive trigeminal neurons associated with mechanical hyperalgesia. Brain Res Bull 2019; 154:61-67. [PMID: 31722251 DOI: 10.1016/j.brainresbull.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (resolvin D1 [RvD1]) is biosynthesized from docosahexaenoic acid (DHA), and belongs to a novel family of lipid mediators showing remarkable anti-inflammatory effects; however, the effect of RvD1 on inflammation-induced hyperexcitability of nociceptive neurons under in vivo conditions remains to be determined. The present study, therefore, investigated whether under in vivo conditions, systemic administration of RvD1 could attenuate the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis (SpVc) wide-dynamic range (WDR) neurons associated with hyperalgesia in rats. The threshold of escape from mechanical stimulation applied to the orofacial area in rats with complete Freund's adjuvant-induced inflammation was significantly lower than in naïve rats. The lowered mechanical threshold in rats with inflammation was returned to control levels following administration of RvD1 (3 ng/kg, i.p.) for 3 days. The mean discharge frequency of SpVc WDR neurons in rats with inflammation was significantly decreased after RvD1 administration for both non-noxious and noxious mechanical stimuli. Increased spontaneous discharge of SpVc WDR neurons in rats with inflammation was also significantly decreased after RvD1 administration. Noxious pinch-evoked afterdischarge frequency and occurrence in rats with inflammation was significantly diminished after RvD1 administration. Expansion of the receptive field in rats with inflammation also returned to control levels after RvD1 administration. These results suggest that administration of RvD1 attenuates inflammation-induced hyperexcitability of SpVc WDR neurons associated with inflammatory hyperalgesia. These findings support the idea that RvD1, derived from DHA, as well as DHA itself, are potential complementary or alternative therapeutic agents for the alleviation of inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Anjyu Ikeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Akari Muroki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Chie Suzuki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
14
|
Shimazu Y, Kobayashi A, Endo S, Takemura J, Takeda M. Effect of lutein on the acute inflammation-induced c-Fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons. Eur J Oral Sci 2019; 127:379-385. [PMID: 31542898 DOI: 10.1111/eos.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Although lutein is known to inhibit chronic inflammation, its effect on acute inflammation-induced nociceptive processing in the trigeminal system remains to be determined. The aim of the present study was to investigate whether pretreatment with lutein attenuates acute inflammation-induced sensitization of nociceptive processing in rat spinal trigeminal nucleus caudalis (SpVc) and upper cervical (C1) dorsal horn neurons, via c-Fos immunoreactivity. Mustard oil, a transient receptor potential ankyrin-1 channel agonist, was injected into the whisker pads to induce inflammation. Pretreatment of rats with lutein resulted in significant decreases in the inflammation-induced mean times of face grooming and the thickness of inflammation-induced edema in whisker pads relative to those features in inflamed rats (i.e., rats with no lutein pretreatment). In both the ipsilateral superficial and deep laminae of the SpVc and C1 dorsal horn, there were significantly larger numbers of c-Fos-positive neurons in inflamed rats than in naïve rats, and lutein pretreatment significantly decreased that number relative to inflamed rats. These results suggest that systemic administration of lutein attenuates acute inflammation-induced nocifensive behavior and augmented nociceptive processing of SpVc and C1 neurons that send stimulus localization and intensity information to higher pain centers. These findings support lutein as a potential therapeutic agent for use as an alternative, complementary medicine to attenuate, or even prevent, acute inflammatory pain.
Collapse
Affiliation(s)
- Yoshihito Shimazu
- Department of Life and Food Sciences, Laboratory of Food and Physiological Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ayumu Kobayashi
- Department of Life and Food Sciences, Laboratory of Food and Physiological Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shiori Endo
- Department of Life and Food Sciences, Laboratory of Food and Physiological Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jin Takemura
- Department of Life and Food Sciences, Laboratory of Food and Physiological Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Department of Life and Food Sciences, Laboratory of Food and Physiological Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
15
|
Loskutova E, Shah K, Flitcroft ID, Setti A, Butler JS, Nolan Y, Paudel N, Loughman J. Lutein and zeaxanthin: The possible contribution, mechanisms of action and implications of modern dietary intake for cognitive development in children. HRB Open Res 2019. [DOI: 10.12688/hrbopenres.12903.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background:Studies suggest that lutein and zeaxanthin may be important for cognitive development in children, but a comprehensive evidence synthesis is lacking. The purpose of this evidence synthesis was to analyse the available data regarding the role of lutein and zeaxanthin for cognition in children and propose a theoretical basis for future studies.Methods:The PubMed, Scopus, the ISRCTN registry and Cochrane Library databases were searched for studies that evaluated the relationship between lutein and zeaxanthin and cognitive function in children. Reference list and ancestry searches were performed on relevant articles. A total of 543 articles were identified, of which six cross-sectional studies were included.Results:The literature search revealed that the evidence concerning the effect of lutein and zeaxanthin on cognition in children is sparse. However, there is some preliminary evidence indicating a positive association between lutein and zeaxanthin and cognition in childhood.Conclusions:The cross-sectional nature of the few studies available and the lack of RCT data indicates a need for further investigation before any firm conclusions can be drawn.
Collapse
|