1
|
Ng YY, Ho YC, Yen CH, Lee SS, Tseng CC, Wu SW, Kuan YH. Protective Effect of Hibifolin on Lipopolysaccharide-Induced Acute Lung Injury Through Akt Phosphorylation and NFκB Pathway. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39119817 DOI: 10.1002/tox.24383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.
Collapse
Affiliation(s)
- Yan-Yan Ng
- Department of Pediatric, Chung Kang Branch, Cheng Ching Hospital, Taichung, Taiwan
| | - Yung-Chuan Ho
- Center for General Education, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Hua Yen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, Shiso Municipal Hospital, Shiso, Hyogo, Japan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Kim H, Choi J, Seo J, Lim H, Kang SK. CKD-497 inhibits NF-kB signaling and ameliorates inflammation and pulmonary fibrosis in ovalbumin-induced asthma and particulate matter-induced airway inflammatory diseases. Front Pharmacol 2024; 15:1428567. [PMID: 39170711 PMCID: PMC11336248 DOI: 10.3389/fphar.2024.1428567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Air pollution, allergens, and bacterial infections are major contributors to pathological respiratory disorders worldwide. CKD-497, derived from the rhizome of Atractylodes japonica and the fruits of Schisandra chinensis, is known for its ability to relieve cough and facilitate phlegm expectoration. However, its protective action against allergic asthma and fine dust-induced lung inflammation, along with its underlying mechanisms, have not been thoroughly investigated. Methods: In this study, we established mouse models of ovalbumin (OVA)-induced asthma and particulate matter (PM)-induced pulmonary inflammation to evaluate the effects of CKD-497. Mice were administered CKD-497 orally, and various parameters such as airway inflammation, mucus production, and proinflammatory cytokine levels (IL-1β, IL-6, TNF-α) were measured. Additionally, the macrophage cell line RAW264.7 was pretreated with CKD-497 and stimulated with lipopolysaccharide (LPS) to assess inflammation via the NF-kB signaling pathway. Results: Oral administration of CKD-497 effectively attenuated airway inflammation and mucus production in both OVA-induced asthma and PM-induced lung inflammation models. It also significantly decreased the production of proinflammatory cytokines IL-1β, IL-6, and TNF-α. CKD-497 alleviated leukocyte infiltration, including neutrophils, and reduced fibrillary collagen deposition in PM10-treated mice. In vitro, CKD-497 pretreatment inhibited LPS-induced inflammation in RAW264.7 cells through the suppression of the NF-kB signaling pathway. Discussion: CKD-497 shows potent anti-inflammatory effects in mouse models of asthma and PM-induced lung inflammation, potentially mediated by the inhibition of the NF-kB pathway. These findings suggest that CKD-497 could serve as a functional supplement to protect against respiratory diseases by mitigating pulmonary and airway inflammation induced by allergens and air pollution.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Synthetic Chemistry, Chong Kun Dang Research Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | |
Collapse
|
3
|
Zhu W, Zhang Q, Jin L, Lou S, Ye J, Cui Y, Xiong Y, Lin M, Liang G, Luo W, Zhuang Z. OTUD1 Deficiency Alleviates LPS-Induced Acute Lung Injury in Mice by Reducing Inflammatory Response. Inflammation 2024:10.1007/s10753-024-02074-7. [PMID: 39037666 DOI: 10.1007/s10753-024-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.
Collapse
Affiliation(s)
- Weiwei Zhu
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianhui Zhang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leiming Jin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuaijie Lou
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ye
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaqian Cui
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongqiang Xiong
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengsha Lin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang Liang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Wu Luo
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
5
|
Kutumova EO, Akberdin IR, Egorova VS, Kolesova EP, Parodi A, Pokrovsky VS, Zamyatnin, Jr AA, Kolpakov FA. Physiologically based pharmacokinetic model for predicting the biodistribution of albumin nanoparticles after induction and recovery from acute lung injury. Heliyon 2024; 10:e30962. [PMID: 38803942 PMCID: PMC11128879 DOI: 10.1016/j.heliyon.2024.e30962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin Medical Research Center of Oncology, 115522, Moscow, Russia
- Patrice Lumumba People's Friendship University, 117198, Moscow, Russia
| | - Andrey A. Zamyatnin, Jr
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Fedor A. Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| |
Collapse
|
6
|
Nawaz AD, Haider MZ, Akhtar S. COVID-19 and Alzheimer's disease: Impact of lockdown and other restrictive measures during the COVID-19 pandemic. BIOMOLECULES & BIOMEDICINE 2024; 24:219-229. [PMID: 38078809 PMCID: PMC10950341 DOI: 10.17305/bb.2023.9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection initially results in respiratory distress symptoms but can also lead to central nervous system (CNS) and neurological manifestations, significantly impacting coronavirus disease 2019 (COVID-19) patients with neurodegenerative diseases. Additionally, strict lockdown measures introduced to curtail the spread of COVID-19 have raised concerns over the wellbeing of patients with dementia and/or Alzheimer's disease. The aim of this review was to discuss the overlapping molecular pathologies and the potential bidirectional relationship between COVID-19 and Alzheimer's dementia, as well as the impact of lockdown/restriction measures on the neuropsychiatric symptoms (NPS) of patients with Alzheimer's dementia. Furthermore, we aimed to assess the impact of lockdown measures on the NPS of caregivers, exploring its potential effects on the quality and extent of care they provide to dementia patients.We utilized the PubMed and Google Scholar databases to search for articles on COVID-19, dementia, Alzheimer's disease, lockdown, and caregivers. Our review highlights that patients with Alzheimer's disease face an increased risk of COVID-19 infection and complications. Additionally, these patients are likely to experience greater cognitive decline. It appears that these issues are primarily caused by the SARS-CoV-2 infection and appear to be further exacerbated by restrictive/lockdown measures. Moreover, lockdown measures introduced during the pandemic have negatively impacted both the NPSs of caregivers and their perception of the wellbeing of their Alzheimer's patients. Thus, additional safeguard measures, along with pharmacological and non-pharmacological approaches, are needed to protect the wellbeing of dementia patients and their caregivers in light of this and possible future pandemics.
Collapse
Affiliation(s)
| | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Bae CR, Kim Y, Kwon YG. CU06-1004 alleviates oxidative stress and inflammation on folic acid-induced acute kidney injury in mice. J Pharmacol Sci 2024; 154:77-85. [PMID: 38246731 DOI: 10.1016/j.jphs.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
PURPOSE Acute kidney injury (AKI) is characterized by reduced renal function, oxidative stress, inflammation, and renal fibrosis. CU06-1004, an endothelial cell dysfunction blocker, exhibits anti-inflammatory effects by reducing vascular permeability in pathological conditions. However, the potential effects of CU06-1004 on AKI have not been investigated. We investigated the renoprotective effect of CU06-1004 against oxidative stress, inflammation, and fibrotic changes in a folic acid-induced AKI model. METHODS AKI was induced by intraperitoneal injection of high dose (250 mg/kg) folic acid in mice. CU06-1004 was orally administered a low (10 mg/kg) or high dose (20 mg/kg). RESULTS CU06-1004 ameliorated folic acid-induced AKI by decreasing serum blood urea nitrogen and creatinine levels, mitigating histological abnormalities, and decreasing tubular injury markers such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in folic acid-induced AKI mice. Additionally, CU06-1004 alleviated folic acid-induced oxidative stress by reducing 4-hydroxynonenal and malondialdehyde levels. Furthermore, it attenuated macrophage infiltration and suppressed the expression of the proinflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion protein-1. Moreover, CU06-1004 mitigated folic acid-induced tubulointerstitial fibrosis by decreasing α-smooth muscle actin and transforming growth factor-β expression. CONCLUSION These findings suggest CU06-1004 as a potential therapeutic agent for folic acid-induced AKI.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea; R&D Department, CURACLE Co. Ltd, Seoul, Republic of Korea
| | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea; R&D Department, CURACLE Co. Ltd, Seoul, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Liu Z, Huang X, Guo HY, Zhang LW, Quan YS, Chen FE, Shen QK, Quan ZS. Design, synthesis fusidic acid derivatives alleviate acute lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Eur J Med Chem 2023; 259:115697. [PMID: 37544187 DOI: 10.1016/j.ejmech.2023.115697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Acute lung injury (ALI) refers to a series of lung lesions resulting from multiple lung injuries, even leading to morbidity and death, abundant previous reports have showed that anti-inflammatory as a key to treatment of ALI. Fusidic acid (FA) as an antibiotic has significant anti-bacterial activity and anti-inflammatory effects. In this study, we designed and synthesized 34 FA derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide (LPS)-induced RAW264.7 cells to evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO) and interleukin-6 (IL-6). Most of compounds showed inhibitory effects on inflammatory NO and IL-6 in LPS-induced RAW264.7 cells. Based on the screening results, compound a1 showed the strongest anti-inflammatory activity. Compared with FA, the inhibition rate NO and IL-6 of compound a1 increased 3.08 and 2.09 times at 10 μM, respectively. We further measured a1 inhibited inflammatory factor NO (IC50 = 3.26 ± 0.42 μM), IL-6 (IC50 = 1.85 ± 0.21 μM) and TNF-α (IC50 = 3.88 ± 0.55 μM). We also demonstrated that a1 markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). In vivo results indicate that a1 can reduce lung inflammation and NO, IL-6, TNF-α, COX-2 and iNOS in LPS-induced ALI mice. On the one hand, we demonstrated a1 inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by down-regulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Moreover, a1 also suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway. On the other hand, we demonstrated a1 also role in anti-inflammatory by inhibits nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and further inhibits Caspase-1 and inflammatory factor interleukin-1β (IL-1β). In conclusion, our study demonstrates that a1 has an anti-inflammatory effect and alleviates ALI by regulating inflammatory mediators and suppressing the MAPK, NF-κB and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Lu-Wen Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Fen-Er Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
9
|
He Q, Zuo Z, Song K, Wang W, Yu L, Tang Z, Hu S, Li L, Luo H, Chen Z, Liu J, Lin B, Luo J, Jiang Y, Huang Q, Guo X. Keratin7 and Desmoplakin are involved in acute lung injury induced by sepsis through RAGE. Int Immunopharmacol 2023; 124:110867. [PMID: 37660597 DOI: 10.1016/j.intimp.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Keratin 7 (Krt7) is a member of the keratin family and is primarily involved in cytoskeleton composition. It has been shown that Krt7 is able to influence its own remodeling and interactions with other signaling molecules via phosphorylation at specific sites unique to Krt7. However, its molecular mechanism in acute lung injury (ALI) remains unclear. In this study, differential proteomics was used to analyze lung samples from the receptor for advanced glycation end products (RAGE)-deficient and (wild-type)WT-septic mice. We screened for the target protein Krt7 and identified Ser53 as the phosphorylation site using mass spectrometry (MS), and this phosphorylation further triggered the deformation and disintegration of Desmoplakin (Dsp), ultimately leading to epithelial barrier dysfunction. Furthermore, we demonstrated that in sepsis, mDia1/Cdc42/p38 MAPK signaling activation plays a role in septic lung injury. We also explored the mechanism of alveolar dysfunction of the Krt7-Dsp complex in the epithelial cell barrier. In summary, the present findings increase our understanding of the pathogenesis of septic acute lung injury.
Collapse
Affiliation(s)
- Qi He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zirui Zuo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Song
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiju Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Yu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaoliang Tang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuiwang Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlian Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingqi Lin
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|