1
|
Xiao F, Rui S, Zhang X, Ma Y, Wu X, Hao W, Huang G, Armstrong DG, Chen Q, Deng W. Accelerating diabetic wound healing with Ramulus Mori (Sangzhi) alkaloids via NRF2/HO-1/eNOS pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155990. [PMID: 39243750 DOI: 10.1016/j.phymed.2024.155990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Diabetic foot ulcers (DFUs) represent a severe complication of diabetes mellitus. Ramulus Mori (Sangzhi) alkaloids (SZ-A), an approved oral medication for type 2 diabetes, have not been explored for their potential to enhance the processes involved in diabetic wound healing. This study aims to investigate SZ-A's role in diabetic wound healing mechanisms. The in vivo experimentation involves dividing the subjects into NC and SZ-A groups, with SZ-A dosed at 200 and 400 mg/kg, to assess the therapeutic efficacy of SZ-A. The results of the animal studies show that SZ-A intervention accelerates the processes of diabetic angiogenesis and wound healing in a manner dependent on its concentration. Additionally, a pathological model using advanced glycation end products (AGEs) in HUVECs demonstrates SZ-A's cytoprotective effect. In vitro, SZ-A intervention significantly increases cell proliferation, migration and tube formation, protecting HUVECs from oxidative stress injury induced by AGEs. Mechanistically, SZ-A exerts a protective effect on HUVECs from oxidative stress damage through the activation of the NRF2/HO-1/eNOS signaling pathway. The findings suggest that SZ-A exhibits considerable potential as a promising candidate for treating DFUs, which will aid in more effectively integrating plant-based therapies into clinical settings.
Collapse
Affiliation(s)
- Fugang Xiao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaoshi Zhang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yu Ma
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Guangbin Huang
- Department of Traumatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing University, Chongqing 400014, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China.
| |
Collapse
|
2
|
Koshevaya E, Nazarovskaia D, Simakov M, Belousov A, Morozov V, Gandalipov E, Krivoshapkina E, Krivoshapkin P. Surfactant-free tantalum oxide nanoparticles: synthesis, colloidal properties, and application as a contrast agent for computed tomography. J Mater Chem B 2021; 8:8337-8345. [PMID: 32794534 DOI: 10.1039/d0tb01204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the growing interest of the medical industry in biocompatible nanoparticles (NPs), the current synthetic methods should be adapted to appropriate demands (toxicity, scalability, etc.). Most applications require colloidal systems to be stable not only in water but also in vivo, which represents a major challenge. In this study, biocompatible Ta2O5 NPs were synthesized by a solvothermal method avoiding toxic reagents, and surfactant-free stable hydrosols were obtained and used for computed tomography (CT) imaging. The small hydrodynamic size (2 nm) and colloidal stability of primary NPs were studied by dynamic light scattering (DLS). The particles were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis to confirm their structure and purity. To develop a stable hydrosol preparation protocol, the influence of pH and ultrasonication duration on the stability of Ta2O5 sols was analyzed by DLS and microelectrophoresis. To enhance the understanding of NP behavior in vivo, sol stability in conditions close to physiological (NaCl solutions) was studied in a pH range of 3-9. Hydrosols prepared by the proposed protocol were stable for at least 6 months and exhibited negligible cytotoxicity. Ta2O5 NPs also showed high CT contrast both in theoretical calculations and in vivo (rat gastrointestinal tract).
Collapse
Affiliation(s)
- Ekaterina Koshevaya
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar 167000, Russia
| | | | - Matvey Simakov
- Veterinary Clinic Named after Ivan Fillmore, St. Petersburg 194358, Russia
| | - Alexandr Belousov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | - Vladimir Morozov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | | | | | | |
Collapse
|
3
|
Gautam B, Ayalew H, Dhawan U, Aerathupalathu Janardhanan J, Yu H. Layer‐by‐layer assembly and electrically controlled disassembly of water‐soluble
Poly(3,4‐ethylenedioxythiophene)
derivatives for bioelectronic interface. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bhaskarchand Gautam
- Smart Organic Materials Laboratory Institute of Chemistry, Academia Sinica Nankang Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST), Academia Sinica Taipei Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory Institute of Chemistry, Academia Sinica Nankang Taiwan
| | - Udesh Dhawan
- Smart Organic Materials Laboratory Institute of Chemistry, Academia Sinica Nankang Taiwan
| | - Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory Institute of Chemistry, Academia Sinica Nankang Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST), Academia Sinica Taipei Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| | - Hsiao‐hua Yu
- Smart Organic Materials Laboratory Institute of Chemistry, Academia Sinica Nankang Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST), Academia Sinica Taipei Taiwan
| |
Collapse
|
4
|
Dhawan U, Pan HA, Shie MJ, Chu YH, Huang GS, Chen PC, Chen WL. The Spatiotemporal Control of Osteoblast Cell Growth, Behavior, and Function Dictated by Nanostructured Stainless Steel Artificial Microenvironments. NANOSCALE RESEARCH LETTERS 2017; 12:86. [PMID: 28168610 PMCID: PMC5293702 DOI: 10.1186/s11671-016-1810-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The successful application of a nanostructured biomaterial as an implant is strongly determined by the nanotopography size triggering the ideal cell response. Here, nanoporous topography on 304L stainless steel substrates was engineered to identify the nanotopography size causing a transition in the cellular characteristics, and accordingly, the design of nanostructured stainless steel surface as orthopedic implants is proposed. A variety of nanopore diameters ranging from 100 to 220 nm were fabricated by one-step electrolysis process and collectively referred to as artificial microenvironments. Control over the nanopore diameter was achieved by varying bias voltage. MG63 osteoblasts were cultured on the nanoporous surfaces for different days. Immunofluorescence (IF) and scanning electron microscopy (SEM) were performed to compare the modulation in cell morphologies and characteristics. Osteoblasts displayed differential growth parameters and distinct transition in cell behavior after nanopore reached a certain diameter. Nanopores with 100-nm diameter promoted cell growth, focal adhesions, cell area, viability, vinculin-stained area, calcium mineralization, and alkaline phosphatase activity. The ability of these nanoporous substrates to differentially modulate the cell behavior and assist in identifying the transition step will be beneficial to biomedical engineers to develop superior implant geometries, triggering an ideal cell response at the cell-nanotopography interface.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Hsu-An Pan
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Meng-Je Shie
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Ying Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Guewha S. Huang
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, ROC
| | - Po-Chun Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Section 3, Zhongxiao E Road, Taipei City, 106 Taiwan, ROC
| | - Wen Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu, 300 Taiwan, ROC
| |
Collapse
|
5
|
Dhawan U, Pan HA, Chu YH, Huang GS, Chen PC, Chen WL. Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress. IEEE Trans Nanobioscience 2016; 15:704-712. [PMID: 28029616 DOI: 10.1109/tnb.2016.2605686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biomaterial design involves assessment of cellular response to nanotopography parameters such as shape, dimension of nanotopography features. Here, the effect of nanotopography alongside the in vivo factor, shear stress, on osteoblast cell behavior, is reported. Tantalum oxide nanodots of 50 or 100 nm diameter were engineered using anodized aluminum oxide as a template. Bare tantalum nitride coated silicon substrates were taken as control (flat). MG63 (osteoblast) cells were seeded for 72 hours on flat, 50 or 100 nm nanodots and modulation in cell morphology, cell viability and expression of integrins was studied. Cells displayed a well-extended morphology on 50 nm nanodots in contrast to an elongated morphology on 100 nm nanodots, as observed by scanning electron microscopy and immunofluorescence staining, thereby confirming the cellular response to different nanotopographies. Based on quantitative real-time polymerase chain reaction data, a greater fold change in the expression of α1 , α2 , α3 , α8 , α9 , [Formula: see text], β1 , β4 , β5 , β7 and β8 integrins was observed in cells cultured on 100 nm than on 50 nm nanodots. Moreover, in the presence of a shear stress of 2 dyne/cm2, a 52% increase in the cell viability after culturing the cells for 72 hours was observed on 100 nm nanodots as compared to 50 nm nanodots, thereby validating the effect of shear stress on cell behavior. Duration-of-culture experiments revealed 100 nm nanodots to be an ideal nanotopography choice to engineer optimized implant geometries for an ideal cell response. This study highlights the in vivo factors which need to be considered while designing nanotopographies for in vivo applications, for an ideal response as the cell-nanomaterial interface. Applications in the field of Biomedical, tissue engineering and cancer research are expected.
Collapse
|
6
|
Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness. Sci Rep 2016; 6:31998. [PMID: 27534915 PMCID: PMC4989222 DOI: 10.1038/srep31998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.
Collapse
|
7
|
Dhawan U, Pan HA, Lee CH, Chu YH, Huang GS, Lin YR, Chen WL. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry. PLoS One 2016; 11:e0158425. [PMID: 27362432 PMCID: PMC4928932 DOI: 10.1371/journal.pone.0158425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Nanotopological cues can be exploited to understand the nature of interactions between cells and their microenvironment to generate superior implant geometries. Nanosurface parameters which modulate the cell behavior and characteristics such as focal adhesions, cell morphology are not clearly understood. Here, we studied the role of different nanotopographic dimensions in modulating the cell behavior, characteristics and ultimately the cell fate and accordingly, a methodology to improve implant surface geometry is proposed. Tantalum oxide nanodots of 50, 100nm dot diameter with an inter-dot spacing of 20, 70nm and heights 40, 100nm respectively, were engineered on Silicon substrates. MG63 cells were cultured for 72 hours and the modulation in morphology, focal adhesions, cell extensible area, cell viability, transcription factors and genes responsible for bone protein secretion as a function of the nanodot diameter, inter-dot distance and nanodot height were evaluated. Nanodots of 50nm diameter with a 20nm inter-dot spacing and 40nm height enhanced cell spreading area by 40%, promoted cell viability by 70% and upregulated transcription factors and genes twice as much, as compared to the 100nm nanodots with 70nm inter-dot spacing and 100nm height. Favorable interactions between cells and all dimensions of 50nm nanodot diameter were observed, determined with Scanning electron microscopy and Immunofluorescence staining. Nanodot height played a vital role in controlling the cell fate. Dimensions of nanodot features which triggered a transition in cell characteristics or behavior was also defined through statistical analysis. The findings of this study provide insights in the parameters of nanotopographic features which can vitally control the cell fate and should therefore be taken into account when designing implant geometries.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Hsu An Pan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Chia Hui Lee
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Ying Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Yan Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Wen Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|