1
|
Rehman S, Jermy BR, Rather IA, Sabir JSM, Aljameel SS, Almessiere MA, Slimani Y, Khan FA, Baykal A. Pr 3+ Ion-Substituted Ni-Co Nano-Spinel Ferrites: Their Synthesis, Characterization, and Biocompatibility for Colorectal Cancer and Candidaemia. Pharmaceuticals (Basel) 2023; 16:1494. [PMID: 37895966 PMCID: PMC10610135 DOI: 10.3390/ph16101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotherapeutics have attracted tremendous research interest in the modern pharmaceutical and biomedical industries due to their potential for drug development, targeted delivery, and therapeutic applications. Therefore, the current study underpins the synthesis of praseodymium ion (Pr3+)-substituted Ni0.5Co0.5Fe2O4 nano-spinel ferrites, (Co0.5Ni0.5PrxFe2-xO4 (0.0 ≤ x ≤ 0.10) NSFs, CoNiPr (x ≤ 0.10) NSFs) via the sonochemical route for its application as a nanotherapeutic treatment option. The synthesized nanomaterial was characterized using various analytical techniques, including scanning/transmission electron microscopy (SEM) and X-ray powder diffractometry (XRD). After substitution with Pr (x = 0.08), the particle size, polydispersity index, and zeta potential analysis indicated an increase in hydrodynamic diameter, with an average zeta potential value of -10.2 mV. The investigation of CoNiPr (x ≤ 0.10) NSFs on colorectal cancer (HCT-116) cells demonstrated a significant effect on cancer cell viability. The inhibitory concentration (IC50) of CoNiPr (x ≤ 0.10) NSFs was between 46 ± 0.91 and 288 ± 8.21 for HCT-116 cells. The effect of CoNiPr (x ≤ 0.10) NSFs on normal human embryonic kidney (HEK-293) cells showed a reduction in the HEK-293 cell viability; however, the cell viability was better than HCT-116. The NSFs treatment also showed morphological changes in cancer cell nuclei, as revealed by DAPI (4',6-diamidino-2-phenylindole), nuclear disintegration, and chromatic fragmentation, which are signs of apoptosis or programmed cell death. To examine the potential antifungal effects of CoNiPr NSFs on Candida albicans, known to cause candidemia among cancer patients, the viability of the cells was assessed post treatment with CoNiPr (x ≤ 0.10) NSFs. The increasing ratio of dopant had a moderate impact on the percentage of cell viability loss of 42, 44, and 43% with x = 0.06, 0.08, and 0.10, respectively. These results reinforce that increased dopant significantly impacts the antifungal properties of the synthesized nanomaterial. These findings support the idea that NSFs might be useful in pharmaceuticals.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Balasamy Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Munirah A. Almessiere
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Yassine Slimani
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Firdos A. Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Florya, Istanbul 34295, Turkey;
| |
Collapse
|
2
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
3
|
Zhang W, Ji Z, Zeng Z, Jayapalan A, Bagra B, Sheardy A, He P, LaJeunesse DR, Wei J. Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules 2022; 27:2437. [PMID: 35458634 PMCID: PMC9032144 DOI: 10.3390/molecules27082437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Carbon nanodots are fascinating candidates for the field of biomedicine, in applications such as bioimaging and drug delivery. However, the nuclear penetrability and process are rarely studied and lack understanding, which limits their applications for drug carriers, single-molecule detection and live cell imaging. In this study, we attempt to examine the uptake of CNDs in cells with a focus on the potential nuclear penetrability using enhanced dark-field microscopy (EDFM) associated with hyperspectral imaging (HSI) to quantitatively determine the light scattering signals of CNDs in the cells. The effects of both CND incubation time and concentration are investigated, and plausible nuclear penetration involving the nuclear pore complex (NPC) is discussed. The experimental results and an analytical model demonstrate that the CNDs' uptake proceeds by a concentration-dependent three-stage behavior and saturates at a CND incubation concentration larger than 750 µg/mL, with a half-saturated concentration of 479 μg/mL. These findings would potentially help the development of CNDs' utilization in drug carriers, live cell imaging and other biomedical applications.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Anitha Jayapalan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Bhawna Bagra
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Alex Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Dennis R. LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| |
Collapse
|
4
|
Highly Photostable Carbon Dots from Citric Acid for Bioimaging. MATERIALS 2022; 15:ma15072395. [PMID: 35407731 PMCID: PMC9000082 DOI: 10.3390/ma15072395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Bioimaging supported by nanoparticles requires low cost, highly emissive and photostable systems with low cytotoxicity. Carbon dots (C-dots) offer a possible solution, even if controlling their properties is not always straightforward, not to mention their potentially simple synthesis and the fact that they do not exhibit long-term photostability in general. In the present work, we synthesized two C-dots starting from citric acid and tris (hydroxymethyl)-aminomethane (tris) or arginine methyl ester dihydrochloride. Cellular uptake and bioimaging were tested in vitro using murine neuroblastoma and ovine fibroblast cells. The C-dots are highly biocompatible, and after 24 h of incubation with the cells, 100% viability was still observed. Furthermore, the C-dots synthesized using tris have an average dimension of 2 nm, a quantum yield of 37%, high photostability and a zeta potential (ζ) around −12 mV. These properties favor cellular uptake without damaging cells and allow for very effective bioimaging.
Collapse
|
5
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
6
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
7
|
Wiśniewski M, Czarnecka J, Bolibok P, Świdziński M, Roszek K. New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots-From Surface Chemistry to Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:ma14092454. [PMID: 34065161 PMCID: PMC8125974 DOI: 10.3390/ma14092454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based quantum dots are widely suggested as fluorescent carriers of drugs, genes or other bioactive molecules. In this work, we thoroughly examine the easy-to-obtain, biocompatible, nitrogen-containing carbonaceous quantum dots (N-CQDs) with stable fluorescent properties that are resistant to wide-range pH changes. Moreover, we explain the mechanism of fluorescence quenching at extreme pH conditions. Our in vitro results indicate that N-CQDs penetrate the cell membrane; however, fluorescence intensity measured inside the cells was lower than expected from carbonaceous dots extracellular concentration decrease. We studied the mechanism of quenching and identified reduced form of β-nicotinamide adenine dinucleotide (NADH) as one of the intracellular quenchers. We proved it experimentally that the elucidated redox process triggers the efficient reduction of amide functionalities to non-fluorescent amines on carbonaceous dots surface. We determined the 5 nm-wide reactive redox zone around the N-CQD surface. The better understanding of fluorescence quenching will help to accurately quantify and dose the internalized carbonaceous quantum dots for biomedical applications.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|
8
|
Large Optical Nonlinearity of the Activated Carbon Nanoparticles Prepared by Laser Ablation. NANOMATERIALS 2021; 11:nano11030737. [PMID: 33804154 PMCID: PMC7998668 DOI: 10.3390/nano11030737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/20/2023]
Abstract
Carbon nanoparticles (CNPs) with high porosity and great optical features can be used as a luminescent material. One year later, the same group investigated the NLO properties CNPs and boron-doped CNPs by 532 nm and 1064 nm laser excitations to uncover the underlying physical mechanisms in their NLO response. Hence, a facile approach, laser ablation technique, was employed for carbon nanoparticles (CNPs) synthesis from suspended activated carbon (AC). Morphological properties of the prepared CNPs were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). UV-Vis and fluorescence (FL) spectra were used to optical properties investigation of CNPs. The size distribution of nanoparticles was evaluated using dynamic light scattering (DLS). The nonlinear optical (NLO) coefficients of the synthesized CNPs were determined by the Z-scan method. As a result, strong reverse saturable absorption and self-defocusing effects were observed at the excitation wavelength of 442 nm laser irradiation. These effects were ascribed to the presence of delocalized π-electrons in AC CNPs. To the best of our knowledge, this is the first study investigating the NLO properties of the AC CNPs.
Collapse
|
9
|
Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT. Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS OMEGA 2020; 5:11248-11261. [PMID: 32478212 PMCID: PMC7254528 DOI: 10.1021/acsomega.9b04301] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
With the recent advancement in understanding and control of the structure and optical properties of fluorescent carbon dots (CDs), they have been shown to be valuable in biolabeling of bacteria, tumor cells, tissues, and organelles. Their extremely small size and tunable functional properties coupled with ultrastable fluorescence enable CDs to be used for easy and effective labeling of various organelles. In addition, CDs with advantages of easy preparation and functionalization with recognition elements and/or drugs have emerged as nanocarriers for organelle-targeted drug delivery. In this review, we mainly discuss the applications of fluorescent CDs for the labeling of organelles, including lysosome, nucleoli, nucleus, endoplasmic reticulum, and mitochondria. We highlight the importance of the surface properties (functional groups, hydrophobicity/hydrophilicity, charges, zwitterions) and the size of CDs for labeling. Several interesting examples are provided to highlight the potential and disadvantages of CDs for labeling organelles. Strategies for the preparation of CDs for specific labeling of organelles are suggested. With the edge in preparation of diverse CDs, their potential in labeling and drug delivery is highly expected.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
| | - Ren-Siang Wu
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
- Center
of Excellence for the Oceans, National Taiwan
Ocean University, Keelung 20224, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Huan-Tsung Chang
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
10
|
Ahmed AHR, Dereli-Korkut Z, Lee JH, Piracha S, Gilchrist ML, Jiang X, Wang S. Apoptosis detection via automated algorithms to analyze biomarker translocation in reporter cells. Biotechnol Bioeng 2020; 117:1470-1482. [PMID: 31956989 DOI: 10.1002/bit.27280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 11/10/2022]
Abstract
Rapid, efficient, and robust quantitative analyses of dynamic apoptotic events are essential in a high-throughput screening workflow. Currently used methods have several bottlenecks, specifically, limitations in available fluorophores for downstream assays and misinterpretation of statistical image data analysis. In this study, we developed cytochrome-C (Cyt-C) and caspase-3/-8 reporter cell lines using lung (PC9) and breast (T47D) cancer cells, and characterized them from the response to apoptotic stimuli. In these two reporter cell lines, the spatial fluorescent signal translocation patterns served as reporters of activations of apoptotic events, such as Cyt-C release and caspase-3/-8 activation. We also developed a vision-based, tunable, automated algorithm in MATLAB to implement the robust and accurate analysis of signal translocation in single or multiple cells. Construction of the reporter cell lines allows live monitoring of apoptotic events without the need for any other dyes or fixatives. Our algorithmic implementation forgoes the use of simple image statistics for more robust analytics. Our optimized algorithm can achieve a precision greater than 90% and a sensitivity higher than 85%. Combining our automated algorithm with reporter cells bearing a single-color dye/fluorophore, we expect our approach to become an integral component in the high-throughput drug screening workflow.
Collapse
Affiliation(s)
- A H Rezwanuddin Ahmed
- Biomedical Engineering Department, City College, City University of New York, New York City, New York
| | - Zeynep Dereli-Korkut
- Biomedical Engineering Department, City College, City University of New York, New York City, New York
| | - Joanne Haeun Lee
- Biomedical Engineering Department, City College, City University of New York, New York City, New York
| | - Sidra Piracha
- Biomedical Engineering Department, City College, City University of New York, New York City, New York
| | - M Lane Gilchrist
- Chemical Engineering Department, City College, City University of New York, New York City, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Sihong Wang
- Biomedical Engineering Department, City College, City University of New York, New York City, New York
| |
Collapse
|
11
|
Loukanov AR, Gagov HS, Mishonova MY, Nakabayashi S. Biocompatible Carbon Nanodots for Functional Imaging and Cancer Therapy. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijbce.2018070103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes how carbon quantum dots (C-dots) are tiny carbon nanoparticles (less than 10 nm in size) being envisaged to be used in bio-sensing, bio-imaging and drug delivery nanosystems. Their low toxicity and stable chemical properties make them suitable candidates for new types of fluorescent probe, which overcome the common drawbacks of previous fluorescent probes (organic dyes and inorganic quantum dots). In addition, fluorescent C-dots possess a rather strong ability to bind with other organic and inorganic molecules due to their abundant surface groups. For that reason, fluorescent C-dots can be manipulated via series of controllable chemical treatments in order to satisfy the demands in the photocatalytic, biochemical and chemical sensing, bio-imaging, drug delivery and enhanced cell targeting. In recent studies it was described the development of carbon quantum dots with large two-photon absorption cross sections towards two-photon imaging for use in photodynamic cancer therapy. Thus, C-dots have become a rising star in biomedical research with a promising future for the application in nanomedicine.
Collapse
|
12
|
Apoptosis and eryptosis: Striking differences on biomembrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1362-1371. [DOI: 10.1016/j.bbamem.2018.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023]
|
13
|
Manatunga DC, de Silva RM, de Silva KMN, Malavige GN, Wijeratne DT, Williams GR, Jayasinghe CD, Udagama PV. Effective delivery of hydrophobic drugs to breast and liver cancer cells using a hybrid inorganic nanocarrier: A detailed investigation using cytotoxicity assays, fluorescence imaging and flow cytometry. Eur J Pharm Biopharm 2018; 128:18-26. [PMID: 29625162 DOI: 10.1016/j.ejpb.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ± 0.3% and 97.37 ± 0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ± 0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.
Collapse
Affiliation(s)
| | - Rohini M de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka.
| | - K M Nalin de Silva
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka
| | - Gathsaurie Neelika Malavige
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Dulharie T Wijeratne
- Center for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 10250, Sri Lanka
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | - Preethi V Udagama
- Department of Zoology, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
14
|
Jaleel JA, Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 2017; 269:302-321. [PMID: 29170139 DOI: 10.1016/j.jconrel.2017.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
15
|
Thoo L, Fahmi MZ, Zulkipli IN, Keasberry N, Idris A. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages. Cent Eur J Immunol 2017; 42:324-330. [PMID: 29204100 PMCID: PMC5708216 DOI: 10.5114/ceji.2017.70978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Carbon dot (Cdot) nanoparticles are an emerging class of carbon nanomaterials with a promising potential for drug delivery and bio imaging applications. Although the interaction between Cdots and non-immune cell types has been well studied, Cdot interactions with macrophages have not been investigated. Exposure of Cdot nanoparticles to J774.1 cells, a murine macrophage cell line, resulted in minimal toxicity, where notable toxicity was only seen with Cdot concentrations higher than 0.5 mg/ml. Flow cytometric analysis revealed that Cdots prepared from citric acid were internalized at significantly higher levels by macrophages compared with those prepared from bamboo leaves. Interestingly, macrophages preferentially took up phenylboronic acid (PB)-modified nanoparticles. By fluorescence microscopy, strong blue light-specific punctate Cdot fluorescence resembling Cdot structures in the cytosolic space was mostly observed in J774.1 macrophages exposed to PB-modified nanoparticles and not unmodified Cdot nanoparticles. PB binds to sialic acid residues that are overexpressed on diseased cell surfaces. Our findings demonstrate that PB-conjugated Cdots can be taken up by macrophages with low toxicity and high efficiency. These modified Cdots can be used to deliver drugs to suppress or eliminate aberrant immune cells such as macrophages associated with tumors such as tumor-associated macrophages.
Collapse
Affiliation(s)
- Lester Thoo
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Brunei Darussalam
| | | | - Ihsan N Zulkipli
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Brunei Darussalam
| | | | - Adi Idris
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
16
|
Pyrshev KA, Yesylevskyy SO, Mély Y, Demchenko AP, Klymchenko AS. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2123-2132. [PMID: 28784460 DOI: 10.1016/j.bbamem.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In this research we investigate the connection between the cytoplasmic machinery of apoptosis and the plasma membrane organization by studying the coupling of caspase-3 activation and inhibition with PS exposure and the change of lipid order in plasma membrane sensed by a fluorescent membrane probe NR12S. First, we performed in silico molecular dynamics simulations, which suggest that the mechanism of response of NR12S to lipid order may combine both sensitivity to membrane polarity/hydration and change in the fluorophore orientation. Second, cellular studies revealed that upon triggering apoptosis with IPA-3 and camptothecin the NR12S response is similar to that observed after decrease of lipid order induced by cholesterol depletion, 7-ketocholesterol enrichment or sphingomyelin hydrolysis. NR12S response can be influenced by a caspase-3 inhibitor Z-DEVD-FMK. Flow cytometry data further indicate that the NR12S response correlates with the response of FITC-labeled DEVD-FMK peptide and GFP-labeled Annexin V on the whole time scale (0-24h) of apoptosis induction by camptothecin. We conclude that fine changes in lipid order observed by NR12S are coupled with early steps of cellular events in apoptosis.
Collapse
Affiliation(s)
- Kyrylo A Pyrshev
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France; Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine.
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of NASU, Kyiv 03680, Ukraine
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Borisova T, Dekaliuk M, Pozdnyakova N, Pastukhov A, Dudarenko M, Borysov A, Vari SG, Demchenko AP. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17688-17700. [PMID: 28601995 DOI: 10.1007/s11356-017-9414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 05/30/2017] [Indexed: 04/16/2023]
Abstract
Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na+-dependent transporter-mediated uptake and accumulation of L-[14C]glutamate and [3H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials (thiourea and β-alanine), their principal neurotoxic effects are analogous but displayed at a different level of efficiency. Sulfur-containing TU-CDs exhibit lower effects (by ~30%) on glutamate and GABA transport in the nerve terminals in comparison with sulfur-free β-alanine CDs. Our results suggest considering that an uncontrolled presence of carbon-containing particulate matter in the human environment may pose a toxicity risk for the central nervous system.
Collapse
Affiliation(s)
- Tatiana Borisova
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine.
| | - Mariia Dekaliuk
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Natalia Pozdnyakova
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Artem Pastukhov
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Marina Dudarenko
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Arsenii Borysov
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Sandor G Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander P Demchenko
- Dept. Neurochemistry and Lab. of Nanobiotechnologies Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| |
Collapse
|
19
|
Goryacheva IY, Sapelkin AV, Sukhorukov GB. Carbon nanodots: Mechanisms of photoluminescence and principles of application. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Choudhary R, Patra S, Madhuri R, Sharma PK. RETRACTED: Designing of carbon based fluorescent nanosea-urchin via green-synthesis approach for live cell detection of zinc oxide nanoparticle. Biosens Bioelectron 2016; 91:472-481. [PMID: 28068608 DOI: 10.1016/j.bios.2016.12.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Editor following concerns raised by a reader.
There are significant concerns regarding the originality of the electron micrographs displayed in Fig. 1 (panels B-G, especially C). The concern is that these multi-particle images are comprised of copies of the same particles.
These problems with the data presented cast doubt on all the data, and accordingly also the conclusions based on that data, in this publication.
As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process
Collapse
Affiliation(s)
- Raksha Choudhary
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Santanu Patra
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Rashmi Madhuri
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| | - Prashant K Sharma
- Functional Nanomaterials Research Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
21
|
Zholobak NM, Popov AL, Shcherbakov AB, Popova NR, Guzyk MM, Antonovich VP, Yegorova AV, Scrypynets YV, Leonenko II, Baranchikov AY, Ivanov VK. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1905-1917. [PMID: 28144539 PMCID: PMC5238650 DOI: 10.3762/bjnano.7.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/10/2016] [Indexed: 05/25/2023]
Abstract
Luminescent organic dots (O-dots) were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated.
Collapse
Affiliation(s)
- Nadezhda M Zholobak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | - Alexander B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Nelly R Popova
- Institute of Theoretical and Experimental Biophysics, Pushchino 142290, Russia
| | - Mykhailo M Guzyk
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv 01601, Ukraine
| | - Valeriy P Antonovich
- Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa 65080, Ukraine
| | - Alla V Yegorova
- Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa 65080, Ukraine
| | - Yuliya V Scrypynets
- Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa 65080, Ukraine
| | - Inna I Leonenko
- Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa 65080, Ukraine
| | - Alexander Ye Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia
- National Research Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|