1
|
Kamel MM, Badr A, Alkhalifah DHM, Mahmoud R, GadelHak Y, Hozzein WN. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules 2024; 29:3394. [PMID: 39064972 PMCID: PMC11280068 DOI: 10.3390/molecules29143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.
Collapse
Affiliation(s)
- Maha M. Kamel
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo 11790, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef 62511, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| |
Collapse
|
2
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
3
|
Kim BK, Lee SA, Park M, Jeon EJ, Kim MJ, Kim JM, Kim H, Jung S, Kim SK. Ultrafast Real-Time PCR in Photothermal Microparticles. ACS NANO 2022; 16:20533-20544. [PMID: 36475304 PMCID: PMC9799066 DOI: 10.1021/acsnano.2c07017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 05/20/2023]
Abstract
As the turnaround time of diagnosis becomes important, there is an increasing demand for rapid, point-of-care testing (POCT) based on polymerase chain reaction (PCR), the most reliable diagnostic tool. Although optical components in real-time PCR (qPCR) have quickly become compact and economical, conventional PCR instruments still require bulky thermal systems, making it difficult to meet emerging needs. Photonic PCR, which utilizes photothermal nanomaterials as heating elements, is a promising platform for POCT as it reduces power consumption and process time. Here, we develop a photonic qPCR platform using hydrogel microparticles. Microparticles consisting of hydrogel matrixes containing photothermal nanomaterials and primers are dubbed photothermal primer-immobilized networks (pPINs). Reduced graphene oxide is selected as the most suitable photothermal nanomaterial to generate heat in pPIN due to its superior light-to-heat conversion efficiency. The photothermal reaction volume of 100 nL (predefined by the pPIN dimensions) provides fast heating and cooling rates of 22.0 ± 3.0 and 23.5 ± 2.6 °C s-1, respectively, enabling ultrafast qPCR within 5 min only with optical components. The microparticle-based photonic qPCR facilitates multiplex assays by loading multiple encoded pPIN microparticles in a single reaction. As a proof of concept, four-plex pPIN qPCR for bacterial discrimination are successfully demonstrated.
Collapse
Affiliation(s)
- Bong Kyun Kim
- Division
of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- BioActs
Co., Ltd., Incheon 21666, Korea
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Sang-A Lee
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Minju Park
- Soft
Hybrid Materials Research Center, KIST, Seoul 02792, Korea
| | - Eui Ju Jeon
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Mi Jung Kim
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Jung Min Kim
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Heesuk Kim
- Soft
Hybrid Materials Research Center, KIST, Seoul 02792, Korea
- Division
of Energy and Environmental Technology, KIST School, UST, Daejeon 34113, Korea
| | - Seungwon Jung
- Center
for Advanced Biomolecular Recognition, KIST, Seoul 02792, Korea
- Department
of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Korea
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| | - Sang Kyung Kim
- Center
for Advanced Biomolecular Recognition, KIST, Seoul 02792, Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Center
for Augmented Safety Systems with Intelligence, Sensing and Tracking
(ASSIST), KIST, Seoul 02792, Korea
| |
Collapse
|
4
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
5
|
Sanabria NM, Gulumian M. The use of HRM shifts in qPCR to investigate a much neglected aspect of interference by intracellular nanoparticles. PLoS One 2021; 16:e0260207. [PMID: 34874941 PMCID: PMC8651142 DOI: 10.1371/journal.pone.0260207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic molecular studies used to understand potential risks of engineered nanomaterials (ENMs) are incomplete. Intracellular residual ENMs present in biological samples may cause assay interference. This report applies the high-resolution melt (HRM) feature of RT-qPCR to detect shifts caused by the presence of gold nanoparticles (AuNPs). A universal RNA standard (untreated control) sample was spiked with known amounts of AuNPs and reverse transcribed, where 10 reference genes were amplified. The amplification plots, dissociation assay (melt) profiles, electrophoretic profiles and HRM difference curves were analysed and detected interference caused by AuNPs, which differed according to the amount of AuNP present (i.e. semi-quantitative). Whether or not the assay interference was specific to the reverse transcription or the PCR amplification step was tested. The study was extended to a target gene-of-interest (GOI), Caspase 7. Also, the effect on in vitro cellular samples was assessed (for reference genes and Caspase 7). This method can screen for the presence of AuNPs in RNA samples, which were isolated from biological material in contact with the nanomaterials, i.e., during exposure and risk assessment studies. This is an important quality control procedure to be implemented when quantifying the expression of a GOI from samples that have been in contact with various ENMs. It is recommended to further examine 18S, PPIA and TBP since these were the most reliable for detecting shifts in the difference curves, irrespective of the source of the RNA, or, the point at which the different AuNPs interacted with the assay.
Collapse
Affiliation(s)
- Natasha M. Sanabria
- A Division of National Health Laboratory Services, National Institute for Occupational Health, Johannesburg, South Africa
| | - Mary Gulumian
- A Division of National Health Laboratory Services, National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
6
|
MacCormack TJ, Meli MV, Ede JD, Ong KJ, Rourke JL, Dieni CA. Commentary: Revisiting nanoparticle-assay interference: There's plenty of room at the bottom for misinterpretation. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110601. [PMID: 33857590 DOI: 10.1016/j.cbpb.2021.110601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Engineered nanomaterials (ENMs) are a diverse class of materials whose distinct properties make them desirable in a multitude of applications. The proliferation of nanotoxicology research has improved our understanding of ENM toxicity, but an under appreciation for their potential to interfere with biochemical assays has hampered progress in the field. The physicochemical properties of ENMs can promote their interaction with membranes or biomacromolecules (e.g. proteins, genomic material). This can influence the activity of enzymes used as biomarkers or as reagents in biochemical assay protocols, bind indicator dyes in cytotoxicity tests, and/or interfere with the cellular mechanisms controlling the uptake of such dyes. The spectral characteristics of some ENMs can cause interference with common assay chromophores, fluorophores, and radioisotope scintillation cocktails. Finally, the inherent chemical reactivity of some ENMs can short circuit assay mechanisms by directly oxidizing or reducing indicator dyes. These processes affect data quality and may lead to significant misinterpretations regarding ENM safety. We provide an overview of some ENM properties that facilitate assay interference, examples of interference and the erroneous conclusions that may result from it, and a number of general and specific recommendations for validating cellular and biochemical assay protocols in nanotoxicology studies.
Collapse
Affiliation(s)
- T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB E4L1E4, Canada.
| | - M-V Meli
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB E4L1E4, Canada
| | - J D Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, USA
| | - K J Ong
- Vireo Advisors, LLC, Boston, MA 02130-4323, USA
| | - J L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB E4L1E4, Canada
| | - C A Dieni
- Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave., Grand Junction, CO 81501, USA
| |
Collapse
|
7
|
Giesen B, Nickel AC, Barthel J, Kahlert UD, Janiak C. Augmented Therapeutic Potential of Glutaminase Inhibitor CB839 in Glioblastoma Stem Cells Using Gold Nanoparticle Delivery. Pharmaceutics 2021; 13:295. [PMID: 33672398 PMCID: PMC7926460 DOI: 10.3390/pharmaceutics13020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gold nanoparticles (Au NPs) are studied as delivery systems to enhance the effect of the glutaminase1 inhibitor CB839, a promising drug candidate already in clinical trials for tumor treatments. Au NPs were synthesized using a bottom-up approach and covered with polymers able to bind CB839 as a Au-polymer-CB839 conjugate. The drug loading efficiency (DLE) was determined using high-performance liquid chromatography and characterization of the CB839-loaded NPs was done with various microscopic and spectroscopic methods. Despite the chemical inertness of CB839, Au NPs were efficient carriers with a DLE of up to 12%, depending on the polymer used. The therapeutic effect of CB839 with and without Au was assessed in vitro in 2D and 3D glioblastoma (GBM) cell models using different assays based on the colony formation ability of GBM stem cells (GSCs). To avoid readout disturbances from the Au metal, viability methods which do not require optical detection were hereby optimized. These showed that Au NP delivery increased the efficacy of CB839 in GSCs, compared to CB839 alone. Fluorescent microscopy proved successful NP penetration into the GSCs. With this first attempt to combine CB839 with Au nanotechnology, we hope to overcome delivery hurdles of this pharmacotherapy and increase bioavailability in target sites.
Collapse
Affiliation(s)
- Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
| | - Ann-Christin Nickel
- Klinik für Neurochirurgie, Medizinische Fakultät, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany;
| | - Juri Barthel
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C 2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;
| | - Ulf Dietrich Kahlert
- Klinik für Neurochirurgie, Medizinische Fakultät, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany;
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
| |
Collapse
|
8
|
Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. NANOMATERIALS 2020; 10:nano10040750. [PMID: 32326418 PMCID: PMC7221878 DOI: 10.3390/nano10040750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.
Collapse
|
9
|
Influence of Magnetite Nanoparticles and Quantum Dots on the Expression of Reference Genes in Peripheral Blood Cells. Bull Exp Biol Med 2018; 166:264-267. [PMID: 30488202 DOI: 10.1007/s10517-018-4329-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 01/09/2023]
Abstract
We studied the influence of magnetite nanoparticles (FeO•Fe2O3) and quantum dots (CdSe/ZnS coated with mercaptopropionic acid) on the expression of 5 common reference genes (BA, B2M, PPIA, UBC, and YWHAZ) in peripheral blood cells from 20 volunteers by reverse transcription PCR method. The stability of the expression of reference genes varied depending of the cells type and chemical structure of nanoparticles. The level of YWHAZ mRNA after exposure by nanoparticles demonstrated highest stability in lymphocytes, neutrophils, and monocytes. Stability of YWHAZ expression was confirmed by Western blotting. Our findings suggest that YWHAZ is the most suitable as the reference gene.
Collapse
|