1
|
Shao X, Liu X, Yu L, Yu X, Hu J. A fluorescence-based lateral flow immunoassay using AIEgen-encapsulated nanoparticles to rapidly and sensitively detect pro-gastrin-releasing peptide. Mikrochim Acta 2024; 191:733. [PMID: 39514021 DOI: 10.1007/s00604-024-06818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A fluorescence lateral flow immunoassay (F-LFIA) is presented using nanoparticles with encapsulated molecules whose emission is caused by aggregation as the fluorescent label to quantitatively detect gastrin-releasing peptide precursor (proGRP) in serum. The detection system was optimized to achieve a broad linear detection range of 10 ~ 5000 pg/mL and a detection limit of 6 pg/mL for F-LFIA. The proposed method exhibited good sensitivity, specificity, and reproducibility. The performance and applicability of the F-LFIA were evaluated in the analysis of 183 human serum samples, and the results were strongly correlated with those of the electrochemiluminescence immunoassay. The proposed F-LFIA can serve as a precise and rapid detection method to detect proGRP and has potential for the early diagnosis of small-cell lung cancer (SCLC).
Collapse
Affiliation(s)
- Xiangyang Shao
- Department of Laboratory Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Xiaoli Liu
- Department of Laboratory Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Lianzi Yu
- Department of Laboratory Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Xiuzhi Yu
- Roche Diagnostics (Shanghai) Limited, Shanghai, 201203, China
| | - Jianhua Hu
- Department of Laboratory Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China.
| |
Collapse
|
2
|
Shin M, Kim W, Yoo K, Cho HS, Jang S, Bae HJ, An J, Lee JC, Chang H, Kim DE, Kim J, Lee LP, Jun BH. Highly sensitive multiplexed colorimetric lateral flow immunoassay by plasmon-controlled metal-silica isoform nanocomposites: PINs. NANO CONVERGENCE 2024; 11:42. [PMID: 39446245 PMCID: PMC11502615 DOI: 10.1186/s40580-024-00449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Lateral flow assay (LFA) systems use metal nanoparticles for rapid and convenient target detection and are extensively studied for the diagnostics of various diseases. Gold nanoparticles (AuNPs) are often used as probes in LFAs, displaying a single red color. However, there is a high demand for colorimetric LFAs to detect multiple biomarkers, requiring the use of multicolored NPs. Here, we present a highly sensitive multiplexed colorimetric lateral flow immunoassay by multicolored Plasmon-controlled metal-silica Isoform Nanocomposites (PINs). We utilized the localized surface plasmon resonance effect to create multi-colored PINs by precisely adjusting the distance between the NPs on the surface of PINs through the controlled addition of reduced gold and silver precursors. Through simulations, we also confirmed that the distance between nanoparticles on the surface of PINs significantly affects the color and colorimetric signal intensity of the PINs. We achieved multicolored PINs that exhibit stronger colorimetric signals, offering a new solution for LFA detection with high sensitivity and a 33 times reduced limit of detection (LOD) while maintaining consistent size deviations within 5%. We expect that our PINs-based colorimetric LFA will facilitate the sensitive and simultaneous detection of multiple biomarkers in point-of-care testing.
Collapse
Affiliation(s)
- Minsup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sohyeon Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Joo Bae
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehyun An
- Company of BioSquare, Hwaseong, 18449, Republic of Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Gong H, Gai S, Tao Y, Du Y, Wang Q, Ansari AA, Ding H, Wang Q, Yang P. Colorimetric and Photothermal Dual-Modal Switching Lateral Flow Immunoassay Based on a Forced Dispersion Prussian Blue Nanocomposite for the Sensitive Detection of Prostate-Specific Antigen. Anal Chem 2024; 96:8665-8673. [PMID: 38722711 DOI: 10.1021/acs.analchem.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| | - Yuelin Tao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qingyu Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | | | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qingqing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| |
Collapse
|
4
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Cho HS, Noh MS, Kim YH, Namgung J, Yoo K, Shin MS, Yang CH, Kim YJ, Yu SJ, Chang H, Rho WY, Jun BH. Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:268. [PMID: 38334538 PMCID: PMC10856399 DOI: 10.3390/nano14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.
Collapse
Affiliation(s)
- Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Mi Suk Noh
- Bio & Medical Research Center, Bio Business Division, Korea Testing Certification, Gunpo 15809, Gyeonggi-do, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Jayoung Namgung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Seung-Ju Yu
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Yeop Rho
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| |
Collapse
|
6
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
7
|
Tong L, Li D, Huang M, Huang L, Wang J. Gold-Silver Alloy Nanoparticle-Incorporated Pitaya-Type Silica Nanohybrids for Sensitive Competitive Lateral Flow Immunoassay. Anal Chem 2023; 95:17318-17327. [PMID: 37967331 DOI: 10.1021/acs.analchem.3c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Although the competitive lateral flow immunoassay (CLFIA) using gold nanoparticles (AuNPs) as labels has been widely adopted for the rapid detection of small molecules, its sensitivity is often constrained by the insufficient colorimetric signal produced by conventional AuNPs labels. Herein, we introduce a new type of intensified colorimetric label, denoted as SAAS, which is engineered by integrating gold-silver alloy nanoparticles (Au-Ag NPs) within a dendritic silica scaffold. These pitaya-type silica nanohybrids combine the advantages of the amplified molar extinction coefficient of alloy units with the signal collective effect of numerous Au-Ag NPs in a singular label. The SAAS-based CLFIA strips not only achieve qualitative screening of aflatoxin B1 (AFB1) at an extraordinarily low concentration of 0.2 ng/mL by the naked eye but also enable precise AFB1 quantification through a smartphone, with a remarkable limit of detection of 0.00314 ng/mL. Moreover, by leveraging SAAS as a quencher, we have delved into transforming the conventional signal-off mode of competitive immunoassay into a signal-on configuration. This innovation led to the development of a fluorescent LFIA that augments interpretative precision and sensitivity. Our study demonstrates the substantial potential of the proposed nanohybrid labels in enhancing the sensitivity of CLFIA for detecting small molecules.
Collapse
Affiliation(s)
- Lu Tong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mei Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Yang X, Cheng X, Wei H, Tu Z, Rong Z, Wang C, Wang S. Fluorescence-enhanced dual signal lateral flow immunoassay for flexible and ultrasensitive detection of monkeypox virus. J Nanobiotechnology 2023; 21:450. [PMID: 38001482 PMCID: PMC10675944 DOI: 10.1186/s12951-023-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The outbreak of the monkeypox virus (MPXV) worldwide in 2022 highlights the need for a rapid and low-cost MPXV detection tool for effectively monitoring and controlling monkeypox disease. In this study, we developed a flexible lateral flow immunoassay (LFIA) with strong colorimetric and enhanced fluorescence dual-signal output for the rapid, on-site, and highly sensitive detection of the MPXV antigen in different scenarios. A multilayered SiO2-Au core dual-quantum dot (QD) shell nanocomposite (named SiO2-Au/DQD), which consists of a large SiO2 core (~ 200 nm), one layer of density-controlled gold nanoparticles (AuNPs, 20 nm), and thousands of small QDs, was fabricated instead of a traditional colorimetric nanotag (i.e., AuNPs) and a fluorescent nanotag (QD nanobead) to simultaneously provide good stability, strong colorimetric ability and superior fluorescence intensity. With the dual-signal output LFIA, we achieved the specific screening of the MPXV antigen (A29L) in 15 min, with detection limits of 0.5 and 0.0021 ng/mL for the colorimetric and fluorometric modes, respectively. Moreover, the colorimetric mode of SiO2-Au/DQD-LFIA exhibits the same sensitivity as the traditional AuNP- LFIA, whereas the overall sensitivity of this method on the basis of the fluorescent signal can achieve 238- and 3.3-fold improvements in sensitivity for MPXV compared with the AuNP-based LFIA and ELISA methods, respectively, indicating the powerful performance and good versatility of the dual-signal method in the point-of-care testing of the MPXV.
Collapse
Affiliation(s)
- Xingsheng Yang
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China
| | - Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China
| | - Zhijie Tu
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China.
| | - Chongwen Wang
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, P. R. China.
| |
Collapse
|
9
|
Jun BH. Advanced Optical Materials: From Materials to Applications. Int J Mol Sci 2023; 24:15790. [PMID: 37958773 PMCID: PMC10647361 DOI: 10.3390/ijms242115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Optical materials interact significantly with electromagnetic radiation in the visible, ultraviolet, and infrared regions of the spectrum [...].
Collapse
Affiliation(s)
- Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
10
|
Song Z, Guo H, Suo Y, Zhang Y, Zhang S, Qiu P, Liu L, Chen B, Cheng Z. Enhanced NIR-II Fluorescent Lateral Flow Biosensing Platform Based on Supramolecular Host-Guest Self-Assembly for Point-of-Care Testing of Tumor Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37886790 DOI: 10.1021/acsami.3c14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Point-of-care detection of tumor biomarkers with high sensitivity remains an enormous challenge in the early diagnosis and mass screening of cancer. Fluorescent lateral flow immunoassay (LFA) is an attractive platform for point-of-care testing due to its inherent advantages. Particularly, a fluorescent probe is crucial to improving the analytical performance of the LFA platform. Herein, we developed an enhanced second near-infrared (NIR-II) LFA (ENIR-II LFA) platform based on supramolecular host-guest self-assembly for detection of the prostate-specific antigen (PSA) as a model analyte. In this platform, depending on the effective supramolecular surface modification strategy, cucurbit[7]uril (CB[7])-covered rare-earth nanoparticles (RENPs) emitting in the NIR-II (1000-1700 nm) window were prepared and employed as an efficient fluorescent probe (RENPs-CB[7]). Benefiting from its superior optical properties, such as low autofluorescence, excellent photostability, enhanced fluorescence intensity, and increased antibody-conjugation efficiency, the ENIR-II LFA platform displayed a wide linear detection range from 0.65 to 120 ng mL-1, and the limit of detection was down to 0.22 ng mL-1 for PSA, which was 18.2 times lower than the clinical cutoff value. Moreover, the testing time was also shortened to 6 min. Compared with the commercial visible fluorescence LFA kit (VIS LFA) and the previously reported NIR-II LFA based on a RENPs-PAA probe, this ENIR-II LFA demonstrated more competitive advantages in analytical sensitivity, detection range, testing time, and production cost. Overall, the ENIR-II LFA platform offers great potential for the highly sensitive, rapid, and convenient detection of tumor biomarkers and is expected to serve as a useful technique in the general population screening of the high-incidence cancer region.
Collapse
Affiliation(s)
- Zhaorui Song
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Hong Guo
- Clinical Laboratory, Qingdao Women and Children's Hospital Affiliated, Qingdao University, Qingdao 266034, China
| | - Yongkuan Suo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongde Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Peng Qiu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Lifu Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Botong Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| | - Zhen Cheng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
11
|
Garg S, Sachdeva A, Peeters M, McClements J. Point-of-Care Prostate Specific Antigen Testing: Examining Translational Progress toward Clinical Implementation. ACS Sens 2023; 8:3643-3658. [PMID: 37830899 PMCID: PMC10616866 DOI: 10.1021/acssensors.3c01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer (PCa) is the second most common male cancer and is attributable to over 375,000 deaths annually. Prostate specific antigen (PSA) is a key biomarker for PCa and therefore measuring patient PSA levels is an important aspect of the diagnostic pathway. Automated immunoassays are currently utilized for PSA analysis, but they require a laboratory setting with specialized equipment and trained personnel. This results in high diagnostic costs, extended therapeutic turnaround times, and restrictions on testing capabilities in resource-limited settings. Consequently, there is a strong drive to develop point-of-care (PoC) PSA tests that can offer accurate, low-cost, and rapid results at the time and place of the patient. However, many emerging PoC tests experience a trade-off between accuracy, affordability, and accessibility which distinctly limits their translational potential. This review comprehensively assesses the translational advantages and limitations of emerging laboratory-level and commercial PoC tests for PSA determination. Electrochemical and optical PSA sensors from 2013 to 2023 are systematically examined. Furthermore, we suggest how the translational potential of emerging tests can be optimized to achieve clinical implementation and thus improve PCa diagnosis globally.
Collapse
Affiliation(s)
- Saweta Garg
- Merz
Court, School of Engineering, Newcastle
University, Claremont Road, NE1 7RU Newcastle upon Tyne, U.K.
- Department
of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Manchester M20 4BX, U.K.
| | - Ashwin Sachdeva
- Division
of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, U.K.
- Department
of Urology, The Christie NHS Foundation
Trust, Manchester M20 4BX, U.K.
| | - Marloes Peeters
- Merz
Court, School of Engineering, Newcastle
University, Claremont Road, NE1 7RU Newcastle upon Tyne, U.K.
| | - Jake McClements
- Merz
Court, School of Engineering, Newcastle
University, Claremont Road, NE1 7RU Newcastle upon Tyne, U.K.
| |
Collapse
|
12
|
Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. BIOSENSORS 2023; 13:837. [PMID: 37754072 PMCID: PMC10526804 DOI: 10.3390/bios13090837] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow tests are one of the most important types of paper-based point-of-care (POCT) diagnostic tools. It shows great potential as an implement for improving the rapid screening and management of infections in global pandemics or other potential health disorders by using minimally expert staff in locations where no sophisticated laboratory services are accessible. They can detect different types of biomarkers in various biological samples and provide the results in a little time at a low price. An important challenge regarding conventional LFAs is increasing their sensitivity and specificity. There are two main approaches to increase sensitivity and specificity, including assay improvement and target enrichment. Assay improvement comprises the assay optimization and signal amplification techniques. In this study, a summarize of various sensitivity and specificity enhancement strategies with an objective evaluation are presented, such as detection element immobilization, capillary flow rate adjusting, label evolution, sample extraction and enrichment, etc. and also the key findings in improving the LFA performance and solving their limitations are discussed along with numerous examples.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Fatemeh Riahi
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
13
|
Kim J, Shin MS, Shin J, Kim HM, Pham XH, Park SM, Kim DE, Kim YJ, Jun BH. Recent Trends in Lateral Flow Immunoassays with Optical Nanoparticles. Int J Mol Sci 2023; 24:ijms24119600. [PMID: 37298550 DOI: 10.3390/ijms24119600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Rapid, accurate, and convenient diagnosis is essential for effective disease management. Various detection methods, such as enzyme-linked immunosorbent assay, have been extensively used, with lateral flow immunoassay (LFIA) recently emerging as a major diagnostic tool. Nanoparticles (NPs) with characteristic optical properties are used as probes for LFIA, and researchers have presented various types of optical NPs with modified optical properties. Herein, we review the literature on LFIA with optical NPs for the detection of specific targets in the context of diagnostics.
Collapse
Affiliation(s)
- Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jonghyun Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Min Park
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Zhang L, Su Y, Liang X, Cao K, Luo Q, Luo H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. NANO RESEARCH 2023; 16:7459-7469. [PMID: 37223429 PMCID: PMC9971675 DOI: 10.1007/s12274-022-5354-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 05/25/2023]
Abstract
Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening. Electronic Supplementary Material Supplementary material (characterization of AuNPs and 4-MBA@AuNP probe; the optimal 4-MBA load for AuNPs; the optimal K2CO3 volumes for 4-MBA@AuNP-3G5 conjugates; the optimal 3G5 load for 4-MBA@AuNP conjugates; effect of NaCl concentration on 4-MBA@AuNP-3G5 stability; the linear curve of T-line color and SERS intensity versus different p-tau396,404 concentrations; the comparison of colorimetric-based LFA test results and the diagnosis results; Raman intensities and antibody activity of 4-MBA@AuNP-3G5 before and after storage; colorimetric intensity of dual-readout LFA detecting different concentrations of p-tau396,404 protein; sequence of synthesized peptides used in this study; information of the participants in this study; the information of antibodies used in this study) is available in the online version of this article at 10.1007/s12274-022-5354-4.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| |
Collapse
|
15
|
Park SM, Jun BH. Synthesis and Applications of Optical Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:297. [PMID: 36678049 PMCID: PMC9862482 DOI: 10.3390/nano13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
As optical materials have shown outstanding physical and chemical characteristics in the bio, medical, electronics, energy and related fields of studies, the potential benefits of using these materials have been widely recognized [...].
Collapse
Affiliation(s)
- Seung-Min Park
- Department of Urology, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
16
|
Zhuang H, Xu C, Gao F, Li Y, Lei C, Yu C. Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering (Basel) 2022; 9:bioengineering9070266. [PMID: 35877318 PMCID: PMC9311751 DOI: 10.3390/bioengineering9070266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Lateral flow assays (LFAs) have attracted much attention as rapid and affordable point-of-care devices for medical diagnostics. The global SARS-CoV-2 pandemic has further highlighted the importance of LFAs. Many efforts have been made to enhance the sensitivity of LFAs. In recent years, silica nanomaterials have been used to either amplify the signal of label materials or provide stability, resulting in better detection performance. In this review, the recent progress of silica-nanomaterial-assisted LFAs is summarized. The impact of the structure of silica nanomaterials on LFA performance, the challenges and prospects in this research area are also discussed.
Collapse
Affiliation(s)
- Han Zhuang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Fang Gao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
- Correspondence: (C.L.); (C.Y.)
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (H.Z.); (F.G.); (Y.L.)
- Correspondence: (C.L.); (C.Y.)
| |
Collapse
|
17
|
Özyurt C, Uludağ İ, İnce B, Sezgintürk MK. Biosensing strategies for diagnosis of prostate specific antigen. J Pharm Biomed Anal 2022. [DOI: 10.1016/j.jpba.2021.114535
expr 871894585 + 891234880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
18
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
19
|
Bock S, Kim HM, Kim J, An J, Choi YS, Pham XH, Jo A, Ham KM, Song H, Kim JW, Hahm E, Rho WY, Lee SH, Park SM, Lee S, Jeong DH, Lee HY, Jun BH. Lateral Flow Immunoassay with Quantum-Dot-Embedded Silica Nanoparticles for Prostate-Specific Antigen Detection. NANOMATERIALS 2021; 12:nano12010033. [PMID: 35009984 PMCID: PMC8746978 DOI: 10.3390/nano12010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023]
Abstract
Prostate cancer can be detected early by testing the presence of prostate-specific antigen (PSA) in the blood. Lateral flow immunoassay (LFIA) has been used because it is cost effective and easy to use and also has a rapid sample-to-answer process. Quantum dots (QDs) with very bright fluorescence have been previously used to improve the detection sensitivity of LFIAs. In the current study, a highly sensitive LFIA kit was devised using QD-embedded silica nanoparticles. In the present study, only a smartphone and a computer software program, ImageJ, were used, because the developed system had high sensitivity by using very bright nanoprobes. The limit of PSA detection of the developed LFIA system was 0.138 ng/mL. The area under the curve of this system was calculated as 0.852. The system did not show any false-negative result when 47 human serum samples were analyzed; it only detected PSA and did not detect alpha-fetoprotein and newborn calf serum in the samples. Additionally, fluorescence was maintained on the strip for 10 d after the test. With its high sensitivity and convenience, the devised LFIA kit can be used for the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
- BioSquare Inc., Hwaseong 18449, Korea; (H.S.); (J.-W.K.)
| | - Yun-Sik Choi
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea; (Y.-S.C.); (D.H.J.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Kyeong-min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Hobeom Song
- BioSquare Inc., Hwaseong 18449, Korea; (H.S.); (J.-W.K.)
| | - Jung-Won Kim
- BioSquare Inc., Hwaseong 18449, Korea; (H.S.); (J.-W.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Deajeon 34158, Korea;
| | - Seung-min Park
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea; (Y.-S.C.); (D.H.J.)
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Correspondence: (H.-Y.L.); (B.-H.J.); Tel.: +82-31-787-2938 (H.-Y.L.); +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (S.B.); (H.-M.K.); (J.K.); (J.A.); (X.-H.P.); (A.J.); (K.-m.H.); (E.H.)
- Correspondence: (H.-Y.L.); (B.-H.J.); Tel.: +82-31-787-2938 (H.-Y.L.); +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
20
|
Özyurt C, Uludağ İ, İnce B, Sezgintürk MK. Biosensing strategies for diagnosis of prostate specific antigen. J Pharm Biomed Anal 2021; 209:114535. [PMID: 34954466 DOI: 10.1016/j.jpba.2021.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023]
Abstract
Almost from the time of its discovery, the prostate specific antigen (PSA) has been one of the most accurate and most extensively studied indicators of prostate cancer (PC). Because of advancements in biosensing systems and technology, PSA analysis methods have been substantially updated and enhanced as compared to their first instances. With the development of techniques in biosensor technology, the number of PSA biosensors that can be used in the biomedical sector is increasing year by year. Many different recognition elements and transducers have been used in the development of biosensor systems that exhibit high sensitivity, selectivity, and specificity. Here in this review, we provide a current overview of the different approaches to PSA detection.
Collapse
Affiliation(s)
- Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - İnci Uludağ
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Bahar İnce
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
21
|
Zhang L, Du X, Su Y, Niu S, Li Y, Liang X, Luo H. Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay. J Nanobiotechnology 2021; 19:366. [PMID: 34789291 PMCID: PMC8597216 DOI: 10.1186/s12951-021-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Aβ42 is one of the most extensively studied blood and Cerebrospinal fluid (CSF) biomarkers for the diagnosis of symptomatic and prodromal Alzheimer's disease (AD). Because of the heterogeneity and transient nature of Aβ42 oligomers (Aβ42Os), the development of technologies for dynamically detecting changes in the blood or CSF levels of Aβ42 monomers (Aβ42Ms) and Aβ42Os is essential for the accurate diagnosis of AD. The currently commonly used Aβ42 ELISA test kits usually mis-detected the elevated Aβ42Os, leading to incomplete analysis and underestimation of soluble Aβ42, resulting in a comprised performance in AD diagnosis. Herein, we developed a dual-target lateral flow immunoassay (dLFI) using anti-Aβ42 monoclonal antibodies 1F12 and 2C6 for the rapid and point-of-care detection of Aβ42Ms and Aβ42Os in blood samples within 30 min for AD diagnosis. By naked eye observation, the visual detection limit of Aβ42Ms or/and Aβ42Os in dLFI was 154 pg/mL. The test results for dLFI were similar to those observed in the enzyme-linked immunosorbent assay (ELISA). Therefore, this paper-based dLFI provides a practical and rapid method for the on-site detection of two biomarkers in blood or CSF samples without the need for additional expertise or equipment.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewei Du
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqi Niu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
- , Wuhan, China.
| |
Collapse
|
22
|
Li H, Warden AR, Su W, He J, Zhi X, Wang K, Zhu L, Shen G, Ding X. Highly sensitive and portable mRNA detection platform for early cancer detection. J Nanobiotechnology 2021; 19:287. [PMID: 34565398 PMCID: PMC8474757 DOI: 10.1186/s12951-021-01039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer, at unresectable advanced stages, presents poor prognoses, which could be prevented by early pancreatic cancer diagnosis methods. Recently, a promising early-stage pancreatic cancer biomarker, extracellular vesicles (EVs) related glypican-1 (GPC1) mRNA, is found to overexpress in pancreatic cancer cells. Current mRNA detection methods usually require expensive machinery, strict preservation environments, and time-consuming processes to guarantee detection sensitivity, specificity, and stability. Herein, we propose a novel two-step amplification method (CHAGE) via the target triggered Catalytic Hairpin Assembly strategy combined with Gold-Enhanced point-of-care-testing (POCT) technology for sensitive visual detection of pancreatic cancer biomarker. First, utilizing the catalyzed hairpin DNA circuit, low expression of the GPC1 mRNA was changed into amplification product 1 (AP1, a DNA duplex) as the next detection targets of the paper strips. Second, the AP1 was loaded onto a lateral flow assay and captured with the gold signal nanoparticles to visualize results. Finally, the detected results can be further enhanced by depositing gold to re-enlarge the sizes of gold nanoparticles in detection zones. As a result, the CHAGE methodology lowers the detection limit of mRNA to 100 fM and provides results within 2 h at 37 °C. Furthermore, we demonstrate the successful application in discriminating pancreatic cancer cells by analyzing EVs' GPC1 mRNA expression levels. Hence, the CHAGE methodology proposed here provides a rapid and convenient POCT platform for sensitive detection of mRNAs through unique probes designs (COVID, HPV, etc.).
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jie He
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Laikuan Zhu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200030, China.
| | - Guangxia Shen
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
23
|
Kim HM, Kim J, Bock S, An J, Choi YS, Pham XH, Cha MG, Seong B, Kim W, Kim YH, Song H, Kim JW, Park SM, Lee SH, Rho WY, Lee S, Jeong DH, Lee HY, Jun BH. Silver-Assembled Silica Nanoparticles in Lateral Flow Immunoassay for Visual Inspection of Prostate-Specific Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:4099. [PMID: 34203603 PMCID: PMC8232291 DOI: 10.3390/s21124099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022]
Abstract
Prostate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator. Quick and easy visual detection of the PSA level greatly helps in early detection and treatment of prostate cancer and reducing mortality. In this study, we developed optimized silica-coated silver-assembled silica nanoparticles (SiO2@Ag@SiO2 NPs) that were applied to a visual lateral flow immunoassay (LFIA) platform for PSA detection. During synthesis, the ratio of silica NPs to silver nitrate changed, and as the synthesized NPs exhibited distinct UV spectra and colors, most optimized SiO2@Ag@SiO2 NPs showed the potential for early prostate cancer diagnosis. The PSA detection limit of our LFIA platform was 1.1 ng/mL. By applying each SiO2@Ag@SiO2 NP to the visual LFIA platform, optimized SiO2@Ag@SiO2 NPs were selected in the test strip, and clinical samples from prostate cancer patients were successfully detected as the boundaries of non-specific binding were clearly seen and the level of PSA was <4 ng/mL, thus providing an avenue for quick prostate cancer diagnosis and early treatment.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Yun-Sik Choi
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Bomi Seong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Hobeom Song
- BioSquare Inc., Seongnam 13620, Korea; (H.S.); (J.-W.K.)
| | - Jung-Won Kim
- BioSquare Inc., Seongnam 13620, Korea; (H.S.); (J.-W.K.)
| | - Seung-min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea;
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| |
Collapse
|
24
|
Pham XH, Park SM, Jun BH. Metal Nano/Microparticles for Bioapplications. Int J Mol Sci 2021; 22:ijms22094543. [PMID: 33925269 PMCID: PMC8123568 DOI: 10.3390/ijms22094543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...].
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea;
| | - Seung-min Park
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea;
- Correspondence:
| |
Collapse
|