1
|
Hao M, Zhang L, Chen P. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides. Int J Mol Sci 2022; 23:ijms23169038. [PMID: 36012300 PMCID: PMC9409441 DOI: 10.3390/ijms23169038] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| |
Collapse
|
2
|
Sajid MI, Mandal D, El-Sayed NS, Lohan S, Moreno J, Tiwari RK. Oleyl Conjugated Histidine-Arginine Cell-Penetrating Peptides as Promising Agents for siRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14040881. [PMID: 35456715 PMCID: PMC9028392 DOI: 10.3390/pharmaceutics14040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Recent approvals of siRNA-based products motivated the scientific community to explore siRNA as a treatment option for several intractable ailments, especially cancer. The success of approved siRNA therapy requires a suitable and safer drug delivery agent. Herein, we report a series of oleyl conjugated histidine–arginine peptides as a promising nonviral siRNA delivery tool. The conjugated peptides were found to bind with the siRNA at N/P ratio ≥ 2 and demonstrated complete protection for the siRNA from early enzymatic degradation at N/P ratio ≥ 20. Oleyl-conjugated peptide -siRNA complexes were found to be noncytotoxic in breast cancer cells (MCF-7 and MDA-MB-231) and normal breast epithelial cells (MCF 10A) at N/P ratio of ~40. The oleyl-R3-(HR)4 and oleyl-R4-(HR)4 showed ~80-fold increased cellular uptake in MDA-MB-231 cells at N/P 40. Moreover, the conjugated peptides-siRNA complexes form nanocomplexes (~115 nm in size) and have an appropriate surface charge to interact with the cell membrane and cause cellular internalization. Furthermore, this study provides a proof-of-concept that oleyl-R5-(HR)4 can efficiently silence STAT-3 gene (~80% inhibition) in MDA-MB-231 cells with similar effectiveness to Lipofectamine. Further exploration of this approach holds a great promise in discovering a successful in vivo siRNA delivery agent with a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Correspondence: ; Tel.: +1-(714)-516-5483; Fax: +1-(714)-516-5481
| |
Collapse
|
3
|
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Gene therapy has gained increasing attention as an alternative to pharmacotherapy for treatment of various diseases. The extracellular and intracellular barriers to gene delivery necessitate the use of gene vectors which has led to the development of myriads of gene delivery systems. However, many of these gene delivery systems have pitfalls such as low biocompatibility, low loading efficiency, low transfection efficiency, lack of tissue selectivity and high production costs. Herein, we report the development of a new series of short cationic amphiphilic peptides with anticancer activity for selective delivery of small interfering RNA (siRNA) and antisense oligodeoxynucleotides (ODNs) to cancer cells. The peptides consist of alternating dyads of hydrophobic (isoleucine (I) or leucine (L)) and hydrophilic (arginine (R) or lysine (L)) amino acids. The peptides exhibited higher preference for transfection of HCT 116 colorectal cancer cells compared to human dermal fibroblasts (HDFs) and induced higher level of gene silencing in the cancer cells. The nucleic acid complexation and transfection efficiency of the peptides was a function of their secondary structure, their hydrophobicity and their C-terminal amino acid. The peptides containing L in their hydrophobic domain formed stronger complexes with siRNA and successfully delivered it to the cancer cells but were unable to release their cargo inside the cells and therefore could not induce any gene silencing. On the contrary, the peptides containing I in their hydrophobic domain were able to release their associated siRNA and induce considerable gene silencing in cancer cells. The peptides exhibited higher selectivity for colorectal cancer cells and induced less gene silencing in fibroblasts compared to the lipid-based commercial transfection reagent DharmaFECT™ 1. The results from this study can serve as a tool for rational design of new peptide-based gene vectors for high selective gene delivery to cancer cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
|