1
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
2
|
Ni W, Zhang M, Mo Y, Du W, Liu H, Wang Z, Cui Y, Zhang H, Wang Z, Liu L, Guo H, Niu R, Zhang F, Tian R. Macrophage membrane-based biomimetic nanocarrier system for enhanced immune activation and combination therapy in liver cancer. Drug Deliv Transl Res 2024:10.1007/s13346-024-01690-y. [PMID: 39172178 DOI: 10.1007/s13346-024-01690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Previous studies have demonstrated that the combination of photodynamic therapy, photothermal therapy and chemotherapy is highly effective in treating hepatocellular carcinoma (HCC). However, the clinical application of this approach has been hindered by the lack of efficient and low-toxicity drug delivery platforms. To address this issue, we developed a novel biomimetic nanocarrier platform named ZID@RM, which utilizes ZIF8 functional nanoparticles encapsulated with macrophage membrane and loaded with indocyanine green and doxorubicin. The bionic nanocarrier platform has good biocompatibility, reducing the risk of rapid clearance by macrophages and improving the targeting ability for HCC cells. Under the dual regulation of acidity and infrared light, ZID@RM stimulated the generation of abundant reactive oxygen species within HCC cells, induced tumor cell pyroptosis and promoted the release of damage-associated molecular patterns to induce immune responses. In the future, this technology platform has the potential to provide personalized and improved healthcare by using patients' own macrophage membranes to create an efficient drug delivery system for tumor therapy.Graphical abstract Scheme 1 Schematic representation of the synthesis of a biomimetic nanomedicine delivery platform (ZID@RM) and its application in tumor imaging-guided combination therapy.
Collapse
Affiliation(s)
- Wei Ni
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingzhu Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yueni Mo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
3
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Ming L, Wu H, Fan Q, Dong Z, Huang J, Xiao Z, Xiao N, Huang H, Liu H, Li Z. Bio-inspired drug delivery systems: A new attempt from bioinspiration to biomedical applications. Int J Pharm 2024; 658:124221. [PMID: 38750980 DOI: 10.1016/j.ijpharm.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.
Collapse
Affiliation(s)
- Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zijian Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical, University, Jiangxi, Ganzhou 341000, China.
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
5
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
6
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
7
|
Xia D, Li J, Feng L, Gao Z, Liu J, Wang X, Hu Y. Advances in Targeting Drug Biological Carriers for Enhancing Tumor Therapy Efficacy. Macromol Biosci 2023; 23:e2300178. [PMID: 37466216 DOI: 10.1002/mabi.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Ziqing Gao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu, 214005, P.R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226361, P.R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
8
|
Arezki Y, Harmouch E, Delalande F, Rapp M, Schaeffer-Reiss C, Galli O, Cianférani S, Lebeau L, Pons F, Ronzani C. The interplay between lysosome, protein corona and biological effects of cationic carbon dots: Role of surface charge titratability. Int J Pharm 2023; 645:123388. [PMID: 37683981 DOI: 10.1016/j.ijpharm.2023.123388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Carbon dots (CDs) are nanoparticles (NPs) with potential applications in the biomedical field. When in contact with biological fluids, most NPs are covered by a protein corona. As well, upon cell entry, most NP are sequestered in the lysosome. However, the interplay between the lysosome, the protein corona and the biological effects of NPs is still poorly understood. In this context, we investigated the role of the lysosome in the toxicological responses evoked by four cationic CDs exhibiting protonatable or non-protonatable amine groups at their surface, and the associated changes in the CD protein corona. The four CDs accumulated in the lysosome and led to lysosomal swelling, loss lysosome integrity, cathepsin B activation, NLRP3 inflammasome activation, and cell death by pyroptosis in a human macrophage model, but with a stronger effect for CDs with titratable amino groups. The protein corona formed around CDs in contact with serum partially dissociated under lysosomal conditions with subsequent protein rearrangement, as assessed by quantitative proteomic analysis. The residual protein corona still contained binding proteins, catalytic proteins, and proteins involved in the proteasome, glycolysis, or PI3k-Akt KEGG pathways, but with again a more pronounced effect for CDs with titratable amino groups. These results demonstrate an interplay between lysosome, protein corona and biological effects of cationic NPs in link with the titratability of NP surface charges.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Ezeddine Harmouch
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Ophélie Galli
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France.
| |
Collapse
|
9
|
Zhao Y, Pan H, Liu W, Liu E, Pang Y, Gao H, He Q, Liao W, Yao Y, Zeng J, Guo J. Menthol: An underestimated anticancer agent. Front Pharmacol 2023; 14:1148790. [PMID: 37007039 PMCID: PMC10063798 DOI: 10.3389/fphar.2023.1148790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Menthol, a widely used natural, active compound, has recently been shown to have anticancer activity. Moreover, it has been found to have a promising future in the treatment of various solid tumors. Therefore, using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure databases, the present study reviewed the anticancer activity of menthol and the underlying mechanism. Menthol has a good safety profile and exerts its anticancer activity via multiple pathways and targets. As a result, it has gained popularity for significantly inhibiting different types of cancer cells by various mechanisms such as induction of apoptosis, cell cycle arrest, disruption of tubulin polymerization, and inhibition of tumor angiogenesis. Owing to the excellent anticancer activity menthol has demonstrated, further research is warranted for developing it as a novel anticancer agent. However, there are limitations and gaps in the current research on menthol, and its antitumor mechanism has not been completely elucidated. It is expected that more basic experimental and clinical studies focusing on menthol and its derivatives will eventually help in its clinical application as a novel anticancer agent.
Collapse
Affiliation(s)
- Yijia Zhao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - E. Liu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
10
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
11
|
Jiang L, Wang K, Qiu L. Doxorubicin hydrochloride and L-arginine co-loaded nanovesicle for drug resistance reversal stimulated by near-infrared light. Asian J Pharm Sci 2022; 17:924-937. [PMID: 36600902 PMCID: PMC9800955 DOI: 10.1016/j.ajps.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is accountable for the inadequate outcome of chemotherapy in clinics. The newly emerging role of nitric oxide (NO) to conquer drug resistance has been recognized as a potential strategy. However, it remains a great challenge to realize targeted delivery as well as accurate release of NO at desired sites. Herein, we developed a PEGylated indocyanine green (mPEG-ICG) integrated nanovesicle system (PIDA) to simultaneously load doxorubicin hydrochloride (DOX⋅HCl) and the NO donor L-arginine (L-Arg), which can produce NO triggered by NIR light irradiation and exert multimodal therapy to sensitize drug-resistant cancers. Upon 808 nm irradiation, the NO released from PIDA led to a decrease in mitochondrial membrane potential, an increase in ROS and significant ATP depletion in K562/ADR cells, thus inhibiting cell growth and resolving the problem of drug resistance. Consequently, the in vivo experiment on K562/ADR-bearing nude mice indicated that PIDA nanovesicles achieved significant anticancer efficacy with a tumor inhibition rate of 80.8%. Above all, PIDA nanovesicles offer guidance for designing nanoplatforms for drug-resistant cancer treatment.
Collapse
Affiliation(s)
- Linping Jiang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kesi Wang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Chang Y, Rui W, Zhang M, Zhou S, Qiu L, Cui P, Hu H, Jiang P, Du X, Ni X, Wang C, Wang J. Facile preparation of copper-gallic acid nanoparticles as a high reproducible and drug loading platform for doxorubicin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Chen BQ, Pan YJ, Zhang DG, Xia HY, Kankala RK. Phase-change materials-based platforms for biomedicine. Front Bioeng Biotechnol 2022; 10:989953. [PMID: 36118587 PMCID: PMC9478655 DOI: 10.3389/fbioe.2022.989953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, phase-change materials (PCMs) have gathered enormous attention in diverse fields of medicine, particularly in bioimaging, therapeutic delivery, and tissue engineering. Due to the excellent physicochemical characteristics and morphological characteristics of PCMs, several developments have been demonstrated in the construction of diverse PCMs-based architectures toward providing new burgeoning opportunities in developing innovative technologies and improving the therapeutic benefits of the existing formulations. However, the fabrication of PCM-based materials into colloidally stable particles remains challenging due to their natural hydrophobicity and high crystallinity. This review systematically emphasizes various PCMs-based platforms, such as traditional PCMs (liposomes) and their nanoarchitectured composites, including PCMs as core, shell, and gatekeeper, highlighting the pros and cons of these architectures for delivering bioactives, imaging anatomical features, and engineering tissues. Finally, we summarize the article with an exciting outlook, discussing the current challenges and future prospects for PCM-based platforms as biomaterials.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Da-Gui Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| |
Collapse
|
15
|
Faizullin B, Gubaidullin A, Gerasimova T, Kashnik I, Brylev K, Kholin K, Nizameev I, Voloshina A, Sibgatullina G, Samigullin D, Petrov K, Musina E, Karasik A, Mustafina A. “Proton sponge” effect and apoptotic cell death mechanism of Ag -Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6–(H2O) ]4 with Ag+ ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR, Chen C, Donnelly RF, Wang X, Makvandi P, Paiva-Santos AC. Macrophage Cell Membrane-Cloaked Nanoplatforms for Biomedical Applications. SMALL METHODS 2022; 6:e2200289. [PMID: 35768282 DOI: 10.1002/smtd.202200289] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Indexed: 05/12/2023]
Abstract
Biomimetic approaches utilize natural cell membrane-derived nanovesicles to camouflage nanoparticles to circumvent some limitations of nanoscale materials. This emergent cell membrane-coating technology is inspired by naturally occurring intercellular interactions, to efficiently guide nanostructures to the desired locations, thereby increasing both therapeutic efficacy and safety. In addition, the intrinsic biocompatibility of cell membranes allows the crossing of biological barriers and avoids elimination by the immune system. This results in enhanced blood circulation time and lower toxicity in vivo. Macrophages are the major phagocytic cells of the innate immune system. They are equipped with a complex repertoire of surface receptors, enabling them to respond to biological signals, and to exhibit a natural tropism to inflammatory sites and tumorous tissues. Macrophage cell membrane-functionalized nanosystems are designed to combine the advantages of both macrophages and nanomaterials, improving the ability of those nanosystems to reach target sites. Recent studies have demonstrated the potential of these biomimetic nanosystems for targeted delivery of drugs and imaging agents to tumors, inflammatory, and infected sites. The present review covers the preparation and biomedical applications of macrophage cell membrane-coated nanosystems. Challenges and future perspectives in the development of these membrane-coated nanosystems are addressed.
Collapse
Affiliation(s)
- Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Chengshui Chen
- Department of Respiratory Medicine, Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, 324000, China
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, 56025, Pisa, Italy
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
17
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
18
|
Imran M, Paudel KR, Jha SK, Hansbro PM, Dua K, Mohammed Y. Dressing of multifunctional nanoparticles with natural cell-derived membranes for the superior chemotherapy. Nanomedicine (Lond) 2022; 17:665-670. [PMID: 35451313 DOI: 10.2217/nnm-2022-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
19
|
Liu Y, Liu X, Liu H, Wang J, Zhang Y, Zhao W, Zhou J. DNA‐Gated N‐CDs@SiO
2
Nanoparticles‐Based Biosensor for MUC1 Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuhong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- College of Life Sciences Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| | - Xuan Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huaxiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jiahong Zhou
- College of Life Sciences Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
20
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|