1
|
Peng L, Gao Z, Liang Y, Guo X, Zhang Q, Cui D. Nanoparticle-based drug delivery systems: opportunities and challenges in the treatment of esophageal squamous cell carcinoma (ESCC). NANOSCALE 2025; 17:8270-8288. [PMID: 40052671 DOI: 10.1039/d4nr05114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy characterized by limited treatment options and poor prognosis. Nanoparticle-based drug delivery systems have emerged as a promising strategy to enhance cancer therapy efficacy by improving drug targeting, reducing toxicity, and enabling multifunctional applications. This review highlights some key types of nanoparticles, including liposomes, polymeric nanoparticles, metallic nanoparticles, dendrimers, and quantum dots, which could effectively improve the delivery of various drugs used in chemotherapy, radiotherapy, and immunotherapy, offering more precise and effective treatment options. With the ability to improve drug stability and overcome biological barriers, nanoparticle-based systems represent a transformative strategy for ESCC treatment. Despite some challenges, such as biocompatibility and scalability, the future of nanoparticle-based drug delivery holds great promise, particularly in the development of personalized nanomedicine and novel therapeutic approaches targeting the tumor microenvironment. With ongoing advancements, nanoparticle-based drug delivery systems hold immense potential to revolutionize ESCC treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Linjia Peng
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zixuan Gao
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yanfeng Liang
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Xiaonan Guo
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Qiuli Zhang
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Daxiang Cui
- The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| |
Collapse
|
2
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
3
|
Wang D, Wang T, Kim D, Tan S, Liu S, Wan J, Deng Q. MicroRNA-375 modulates neutrophil chemotaxis via targeting Cathepsin B in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109933. [PMID: 39343064 PMCID: PMC11561466 DOI: 10.1016/j.fsi.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Neutrophils are crucial for defense against numerous infections, and their migration and activations are tightly regulated to prevent collateral tissue damage. We previously performed a neutrophil-specific miRNA overexpression screening and identified several microRNAs, including miR-375, as potent modulators for neutrophil activity. Overexpression of miR-375 decreases neutrophil motility and migration in zebrafish and human neutrophil-like cells. We screened the genes downregulated by miR-375 in zebrafish neutrophils and identified that Cathepsin B (Ctsba) is required for neutrophil motility and chemotaxis upon tail wounding and bacterial infection. Pharmacological inhibition or neutrophil-specific knockout of ctsba significantly decreased the neutrophil chemotaxis in zebrafish and survival upon systemic bacterial infection. Notably, Ctsba knockdown in human neutrophil-like cells also resulted in reduced chemotaxis. Inhibiting integrin receptor function using RGDS rescued the neutrophil migration defects and susceptibility to systemic infection in zebrafish with either miR-375 overexpression or ctsba knockout. Our results demonstrate that miR-375 and its target Ctsba modulate neutrophil activity during tissue injury and bacterial infection in vivo, providing novel insights into neutrophil biology and the overall inflammation process.
Collapse
Affiliation(s)
- Decheng Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shelly Tan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Xie F, Qiu J, Sun C, Feng L, Jun Y, Luo C, Guo X, Zhang B, Zhou Y, Wang Y, Zhang L, Wang Q. Development of a Specific Aptamer-Modified Nano-System to Treat Esophageal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309084. [PMID: 38704694 PMCID: PMC11267304 DOI: 10.1002/advs.202309084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/23/2024] [Indexed: 05/07/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent gastrointestinal cancer characterized by high mortality and an unfavorable prognosis. While combination therapies involving surgery, chemotherapy, and radiation therapy are advancing, targeted therapy for ESCC remains underdeveloped. As a result, the overall five-year survival rate for ESCC is still below 20%. Herein, ESCC-specific DNA aptamers and an innovative aptamer-modified nano-system is introduced for targeted drug and gene delivery to effectively inhibit ESCC. The EA1 ssDNA aptamer, which binds robustly to ESCC cells with high specificity and affinity, is identified using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). An EA1-modified nano-system is developed using a natural egg yolk lipid nanovector (EA1-EYLNs-PTX/siEFNA1) that concurrently loads paclitaxel (PTX) and a small interfering RNA of Ephrin A1 (EFNA1). This combination counters ESCC's proliferation, migration, invasion, and lung metastasis. Notably, EFNA1 is overexpressed in ESCC tumors with lung metastasis and has an inverse correlation with ESCC patient prognosis. The EA1-EYLNs-PTX/siEFNA1 nano-system offers effective drug delivery and tumor targeting, resulting in significantly improved therapeutic efficacy against ESCC tumors. These insights suggest that aptamer-modified nano-systems can deliver drugs and genes with superior tumor-targeting, potentially revolutionizing targeted therapy in ESCC.
Collapse
Affiliation(s)
- Fei Xie
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Jinrong Qiu
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Congyong Sun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Lulu Feng
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yali Jun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
- The Comprehensive Cancer Center, Department of Clinical Oncology, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Chao Luo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Xiamei Guo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Bowei Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yu Zhou
- The Comprehensive Cancer Center, Department of Clinical Oncology, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yuting Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Li Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Qilong Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huaian No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| |
Collapse
|
5
|
Zhao X, Liu Z, Liu Y, Lu M, Xu J, Wu F, Jin W. Development and application of an RNA nanostructure to induce transient RNAi in difficult transgenic plants. Biotechnol J 2024; 19:e2400024. [PMID: 38797726 DOI: 10.1002/biot.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The development of RNA interference (RNAi) is crucial for studying plant gene function. Its use, is limited to a few plants with well-established transgenic techniques. Spray-induced gene silencing (SIGS) introduces exogenous double-stranded RNA (dsRNA) into plants by spraying, injection, or irrigation, triggering the RNAi pathway to instantly silence target genes. As is a transient RNAi technology that does not rely on transgenic methods, SIGS has significant potential for studying gene function in plants lacking advanced transgenic technology. In this study, to enhance their stability and delivery efficiency, siRNAs were used as structural motifs to construct RNA nanoparticles (NPs) of four shapes: triangle, square, pentagon, and hexagon. These NPs, when synthesized by Escherichia coli, showed that triangular and square shapes accumulated more efficiently than pentagon and hexagon shapes. Bioassays revealed that RNA squares had the highest RNAi efficiency, followed by RNA triangles, with GFP-dsRNA showing the lowest efficiency at 4 and 7 days post-spray. We further explored the use of RNA squares in inducing transient RNAi in plants that are difficult to transform genetically. The results indicated that Panax notoginseng-derived MYB2 (PnMYB2) and Camellia oleifera-derived GUT (CoGUT) were significantly suppressed in P. notoginseng and C. oleifera, respectively, following the application of PnMYB2- and CoGUT-specific RNA squares. These findings suggest that RNA squares are highly effective in SIGS and can be utilized for gene function research in plants.
Collapse
Affiliation(s)
- Xiayang Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhekai Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Mingdong Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Jinfeng Xu
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Shaoxing, Zhejiang, China
| |
Collapse
|
6
|
Xiao Q, Zhang Y, Zhao A, Duan Z, Yao J. Application and development of nanomaterials in the diagnosis and treatment of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1268454. [PMID: 38026877 PMCID: PMC10657196 DOI: 10.3389/fbioe.2023.1268454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Esophageal cancer is a malignant tumor with a high incidence worldwide. Currently, there are a lack of effective early diagnosis and treatment methods for esophageal cancer. However, delivery systems based on nanoparticles (NPs) have shown ideal efficacy in real-time imaging and chemotherapy, radiotherapy, gene therapy, and phototherapy for tumors, which has led to their recent widespread design as novel treatment strategies. Compared to traditional drugs, nanomedicine has unique advantages, including strong targeting ability, high bioavailability, and minimal side effects. This article provides an overview of the application of NPs in the diagnosis and treatment of esophageal cancer and provides a reference for future research.
Collapse
Affiliation(s)
| | | | | | | | - Jun Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
8
|
Advances in aptamer-based nuclear imaging. Eur J Nucl Med Mol Imaging 2022; 49:2544-2559. [PMID: 35394153 DOI: 10.1007/s00259-022-05782-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/26/2022] [Indexed: 01/12/2023]
Abstract
Aptamers are short oligonucleotides that bind to specific target molecules. They have been extensively explored in biomedical applications, including biosensing, medical imaging, and disease treatment. Their adjustable affinity for specific biomarkers stimulates more translational efforts, such as nuclear imaging of tumors in preclinical and clinical settings. In this review, we present recent advances of aptamer-based nuclear imaging and compare aptamer tracers with other biogenic probes in forms of peptides, nanobodies, monoclonal antibodies, and antibody fragments. Fundamental properties of aptamer-based radiotracers are highlighted and potential directions to improve aptamer's imaging performance are discussed. Despite many translational obstacles to overcome, we envision aptamers to be a versatile tool for cancer nuclear imaging in the near future.
Collapse
|
9
|
Ke H, Wu S, Zhang Y, Zhang G. miR-139-3p/Kinesin family member 18B axis suppresses malignant progression of gastric cancer. Bioengineered 2022; 13:4528-4536. [PMID: 35137670 PMCID: PMC8974075 DOI: 10.1080/21655979.2022.2033466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miR-139-3p exerts tumor-suppressing functions in various cancers. We analyzed and identified that miR-139-3p expression was notably low in gastric cancer (GC) via edgeR differential analysis based on The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction (qRT-PCR) assay. The binding relationship between Kinesin Family Member 18B (KIF18B) and miR-139-3p was predicted by bioinformatics databases, and verified through dual-luciferase assay. Western blot and qRT-PCR results also indicated that miR-139-3p restrained KIF18 expression at mRNA and protein levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell, flow cytometry assays were introduced to evaluate cell proliferation, migration, invasion, and cell cycle, respectively, where the results indicated that upregulating miR-139-3p inhibited proliferative, migratory, and invasive abilities of GC cells, while caused cell-cycle arrest. Moreover, the results of rescue experiments illustrated that miR-139-3p hampered the progression of GC cells by targeting and suppressing KIF18B. To sum up, we concluded that miR-139-3p suppressed GC progression by targeting KIF18B.
Collapse
Affiliation(s)
- Hailin Ke
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Songling Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yueyi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|