1
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
2
|
Lan M, Ren Z, Cheng C, Li G, Yang F. Small extracellular vesicles detection using dielectrophoresis-based microfluidic chip for diagnosis of breast cancer. Biosens Bioelectron 2024; 259:116382. [PMID: 38749284 DOI: 10.1016/j.bios.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 μL of sample, achieved a limit of detection (LOD) of 161 particles/μL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.
Collapse
Affiliation(s)
- Mei Lan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Hong X, Cai L, Li L, Zheng D, Lin J, Liang Z, Fu W, Liang D, Zeng T, Sun K, Wang W, Chen S, Ren M, Yan L. Keratinocyte-derived small extracellular vesicles delay diabetic wound healing by triggering fibroblasts autophagy. Arch Physiol Biochem 2024:1-13. [PMID: 38828847 DOI: 10.1080/13813455.2024.2358020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Keratinocyte and fibroblast dysfunctions contribute to delayed healing of diabetic wounds. Small extracellular vesicles (sEV) are key mediators of intercellular communication and are involved in the pathogenesis of several diseases. Recent findings suggest that sEV derived from high-glucose-treated keratinocyte (HaCaT-HG-sEV) can transport LINC01435 to inhibit tube formation and migration of HUVECs, thereby delaying wound healing. This study aimed to elucidate sEV-related communication mechanisms between keratinocytes and fibroblasts during diabetic wound healing. HaCaT-HG-sEV treatment and LINC01435 overexpression significantly decreased fibroblast collagen level and migration ability but significantly increased fibroblast autophagy. However, treatment with an autophagy inhibitor suppressed LINC01435 overexpression-induced decrease in collagen levels in fibroblasts. In diabetic mice, HaCaT-HG-sEV treatment decreased collagen levels and increased the expression of the autophagy-related proteins Beclin-1 and LC3 at the wound site, thereby delaying wound healing. Conclusively, LINC01435 in keratinocyte-derived sEV activates fibroblast autophagy and reduces fibroblast collagen synthesis, leading to impaired diabetic wound healing.
Collapse
Affiliation(s)
- Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leiqin Cai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wan Fu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Shenshan Medical center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sifan Chen
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Li S, Li W, Wu X, Zhang B, Liu L, Yin L. Immune cell-derived extracellular vesicles for precision therapy of inflammatory-related diseases. J Control Release 2024; 368:533-547. [PMID: 38462043 DOI: 10.1016/j.jconrel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Inflammation-related diseases impose a significant global health burden, necessitating urgent exploration of novel treatment modalities for improved clinical outcomes. We begin by discussing the limitations of conventional approaches and underscore the pivotal involvement of immune cells in the inflammatory process. Amidst the rapid growth of immunology, the therapeutic potential of immune cell-derived extracellular vesicles (EVs) has garnered substantial attention due to their capacity to modulate inflammatory response. We provide an in-depth examination of immune cell-derived EVs, delineating their promising roles across diverse disease conditions in both preclinical and clinical settings. Additionally, to direct the development of the next-generation drug delivery systems, we comprehensively investigate the engineered EVs on their advanced isolation methods, cargo loading techniques, and innovative engineering strategies. This review ends with a focus on the prevailing challenges and considerations regarding the clinical translation of EVs in future, emphasizing the need of standardized characterization and scalable production processes. Ultimately, immune cell-derived EVs represent a cutting-edge therapeutic approach and delivery platform, holding immense promise in precision medicine.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xianggui Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Beiyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Teflischi Gharavi A, Niknejad A, Irian S, Rahimi A, Salimi M. Polyethylene Glycol -Mediated Exosome Isolation: A Method for Exosomal RNA Analysis. IRANIAN BIOMEDICAL JOURNAL 2024; 28:132-9. [PMID: 38468372 PMCID: PMC11186611 DOI: 10.61186/ibj.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Background : Exosomal RNAs (ExoRNAs) offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by dynamic light scattering and transmission electron microscopy, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results Extracted exosomes displayed a similar range of size and morphology. We found that polyethylene glycol-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.
Collapse
Affiliation(s)
- Abdulwahab Teflischi Gharavi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Niknejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirabbas Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Wang LX, Zhang X, Guan LJ, Pen Y. What role do extracellular vesicles play in developing physical frailty and sarcopenia? : A systematic review. Z Gerontol Geriatr 2023; 56:697-702. [PMID: 36580105 DOI: 10.1007/s00391-022-02150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Frailty and sarcopenia are typical geriatric conditions with a complex pathophysiology. Extracellular vesicles (EVs) are key regulators of age-related diseases, but the mechanisms underlying physical frailty, sarcopenia, and EVs are not well understood. METHODS A systematic literature review was conducted to examine the evidence supporting an association between EVs and physical frailty and/or sarcopenia by searching the electronic databases, including the Cochrane Library, PubMed, and Embase, from January 2000 to January 2021. RESULTS A total of 216 cross-sectional studies were retrieved, and after the removal of 43 duplicate records, the title and abstract of 167 articles were screened, identifying 6 relevant articles for full-text review. Of the studies five met the inclusion criteria, and heterogeneity among studies was high. There is controversy regarding whether frailty and/or sarcopenia are related to circulating EV levels; however, the cargo of EVs has been associated with frailty and sarcopenia in various ways, such as microRNAs, mitochondrial-derived vesicles (MDVs), and protein cargoes. CONCLUSION Recent studies, although limited, depicted that EVs could be one of the underlying mechanisms of frailty and/or sarcopenia. There is a possibility that physical frailty and sarcopenia may have specific EV concentrations and cargo profiles; however, further research is required to fully understand the mechanisms and identify potential biomarkers and early preventative strategies for physical frailty and sarcopenia.
Collapse
Affiliation(s)
- Ling-Xiao Wang
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China.
| | - Xia Zhang
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| | - Li-Juan Guan
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| | - Yang Pen
- Geriatric Diseases Institute of Chengdu, Department of gerontology and geriatrics, Chengdu Fifth People's Hospital, 611137, Chengdu, China
| |
Collapse
|
9
|
Lei Z, Jiang H, Liu J, Liu Y, Wu D, Sun C, Du Q, Wang L, Wu G, Wang S, Zhang X. Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53859-53870. [PMID: 37909306 DOI: 10.1021/acsami.3c13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) have shown great potential in the field of cancer metastasis research. However, inefficient EV biofabrication has become a barrier to large-scale research on cancer-derived EVs. Here, we presented a novel method to enhance the biofabrication of cancer-derived EVs via audible acoustic wave (AAW), which yielded mechanical stimuli, including surface acoustic pressure and surface stress. Compared to EV yield in conventional static culture, AAW increased the number of cancer-derived EVs by up to 2.5-folds within 3 days. Furthermore, cancer-derived EVs under AAW stimulation exhibited morphology, size, and zeta potential comparable to EVs generated in conventional static culture, and more importantly, they showed the capability to promote cancer cell migration and invasion under both 2D and 3D culture conditions. Additionally, the elevation in EV biofabrication correlated with the activation of the ESCRT pathway and upregulation of membrane fusion-associated proteins (RAB family, SNARE family, RHO family) in response to AAW stimulation. We believe that AAW represents an attractive approach to achieving high-quantity and high-quality production of EVs and that it has the potential to enhance EV biofabrication from other cell types, thereby facilitating EV-based scientific and translational research.
Collapse
Affiliation(s)
- Zhuoyue Lei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuping Liu
- Fuyang Tumor Hospital, Yingzhou District146 Hebin East Rd, Fuyang 236048, China
| | - Di Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qijun Du
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohua Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Shuqi Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Sun Y, Sun F, Xu W, Qian H. Engineered Extracellular Vesicles as a Targeted Delivery Platform for Precision Therapy. Tissue Eng Regen Med 2023; 20:157-175. [PMID: 36637750 PMCID: PMC10070595 DOI: 10.1007/s13770-022-00503-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs)-based cell-free strategy has shown therapeutic potential in tissue regeneration. Due to their important roles in intercellular communications and their natural ability to shield cargos from degradation, EVs are also emerged as novel delivery vehicles for various bioactive molecules and drugs. Accumulating studies have revealed that EVs can be modified to enhance their efficacy and specificity for the treatment of many diseases. Engineered EVs are poised as the next generation of targeted delivery platform in the field of precision therapy. In this review, the unique properties of EVs are overviewed in terms of their biogenesis, contents, surface features and biological functions, and the recent advances in the strategies of engineered EVs construction are summarized. Additionally, we also discuss the potential applications of engineered EVs in targeted therapy of cancer and damaged tissues, and evaluate the opportunities and challenges for translating them into clinical practice.
Collapse
Affiliation(s)
- Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Erwin N, Serafim MF, He M. Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications. Pharm Res 2023; 40:833-853. [PMID: 36319886 DOI: 10.1007/s11095-022-03420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/15/2022] [Indexed: 04/26/2023]
Abstract
Extracellular vesicles (EVs) have various advantageous properties, including a small size, high biocompatibility, efficient cargo loading, and precise cell targeting ability, making them promising tools for therapeutic development. EVs have been increasingly explored for applications like drug delivery. However, due to limited cellular secretion rates of EVs, wide-scale clinical applications are not achievable. Therefore, substantial strategies and research efforts have been devoted to increasing cellular secretion rates of EVs. This review describes various studies exploring different methods to increase the cellular production of EVs, including the application of electrical stimulus, pharmacologic agents, electromagnetic waves, sound waves, shear stress, cell starvation, alcohol, pH, heat, and genetic manipulation. These methods have shown success in increasing EV production, but careful consideration must be given as many of these strategies may alter EV properties and functionalities, and the exact mechanisms causing the increase in cellular production of EVs is generally unknown. Additionally, the methods' effectiveness in increasing EV secretion may diverge with different cell lines and conditions. Further advancements to enhance EV biogenesis secretion for therapeutic development is still a significant need in the field.
Collapse
Affiliation(s)
- Nina Erwin
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
- UF Cancer and Genetics Research Complex, 2033 Mowry Rd, Lab: 0475G, Gainesville, FL, 32608, USA.
| |
Collapse
|
12
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
13
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
14
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
15
|
Zhang Y, Zhang M, Yao A, Xie Y, Lin J, Sharifullah F, Hong Y, Chen H, Cheng F, Lai W. Circ_0011129 Encapsulated by the Small Extracellular Vesicles Derived from Human Stem Cells Ameliorate Skin Photoaging. Int J Mol Sci 2022; 23:ijms232315390. [PMID: 36499715 PMCID: PMC9739284 DOI: 10.3390/ijms232315390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Photoaging is not only the main cause of skin aging caused by exogenous factors, it is also related to a variety of skin diseases and even malignant tumors. Excessive and repeated exposure to ultraviolet radiation, especially UVA induces oxidative stress, DNA damage, inflammation, and collagen and elastin degeneration, ultimately leads to skin photoaging, manifested by skin redness, coarse wrinkles, and pigmentation even skin cancer. There has been a large demand of effective prevention and medications but approaches in the current management of photoaging are very limited. In the previous study, we found that a non-coding circular RNA circ_0011129 acts as a miR-6732-5p adsorption sponge to inhibit the reduction of type I collagen and the denaturation and accumulation of elastin in UVA-induced HDF cells photoaging model. However, in vivo instability and efficient delivery to the target cell of circRNA is a major challenge for its clinical application. Therefore, improving its stability and delivery efficiency are desired. In this study, we proposed a strategy of delivering circ_0011129 with small extracellular vesicles (sEVs) from human adipose-derived stem cells (hADSCs) to intervene in the photoaging process. The results showed that sEVs from hADSCs in 3D bioreactor culture (3D-sEVs) can prevent photoaging. Consequently, by overexpressing circ_0011129 in hADSCs, we successfully loaded it into 3D-sEVs (3D-circ-sEVs) and its protective effect was better. Our studies provide a novel approach to preventing skin photoaging, which has important clinical significance and application value for the development of non-coding RNA drugs to treat skin photoaging. We first screened out hADSCs-derived sEVs with excellent anti-oxidant effects. We then compared the sEVs collected from traditional 2D culture with 3D bioreactor culture. By miRNA-seq and GEO data analysis, we found that miRNAs in 3D-sEVs were enriched in cell activities related to apoptosis, cellular senescence, and inflammation. Subsequently, we prepared circ_0011129-loaded 3D-sEVs (3D-circ-sEVs) by overexpressing it in hADSCs for the treatment of photoaging in vitro. We proved that 3D-circ-sEVs can interfere with the process of cell photoaging and protect cells from UVA radiation damage, as well as in a H2O2-induced oxidative stress model.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Manqi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Amin Yao
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yalin Xie
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Farooqi Sharifullah
- Department of Plastic Surgery, Sun Yat-sen University, Guangzhou 510000, China
| | - Yixin Hong
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (W.L.); (F.C.)
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
- Correspondence: (W.L.); (F.C.)
| |
Collapse
|
16
|
Ojeda-Hernández DD, Hernández-Sapiéns MA, Reza-Zaldívar EE, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Mateos-Díaz JC, Gómez-Pinedo U, Sancho-Bielsa F. Exosomes and Biomaterials: In Search of a New Therapeutic Strategy for Multiple Sclerosis. Life (Basel) 2022; 12:1417. [PMID: 36143453 PMCID: PMC9504193 DOI: 10.3390/life12091417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes A. Hernández-Sapiéns
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Edwin E. Reza-Zaldívar
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Sancho-Bielsa
- Área de Fisiología, Departamento de Ciencias Médicas, Facultad de Medicina de Ciudad Real, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|