1
|
Wang C, Wang X, Tian Y, Tian H, Chen Y, Wu B, Cheng W. Cs xWO 3@NBs as a Multi-Image Guided Photothermal/Photodynamic Combination Therapy Platform for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13375-13389. [PMID: 39679255 PMCID: PMC11646368 DOI: 10.2147/ijn.s484694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Effective cancer treatment relies on the precise deployment of clinical imaging techniques to accurately treat tumors. One highly representative technology among these is multi-imaging guided phototherapy. This work introduces a new and innovative theranostic drug that combines near-infrared (NIR) irradiation-induced photodynamic therapy (PDT) and photothermal therapy (PTT) to treat malignancies. Moreover, it can be utilized as a contrasting substance for X-ray computed tomography (CT) imaging and contrast-enhanced ultrasound (CEUS) to aid in the administration of therapy. Methods Cesium tungsten bronze nanobubbles (CsxWO3@NBs) were constructed via a water-controlled solvothermal synthesis and thin film hydration of phospholipid. Various methods, including dynamic light scattering, transmission electron microscopy, and X-ray photoelectron spectroscopy, were used to analyze and describe the size, shape, and chemical characteristics of the nanoparticles. In this study, hepatoma cell lines HepG2 and HUH7 were employed in vitro, and xenotransplantation mouse models were used to assess their antitumor effects. A series of in vitro and in vivo trials were conducted to assess the effectiveness of combining photodynamic and photothermal therapies, as well as using CEUS and CT imaging. Results The CsxWO3@NBs exhibit photothermal effects and the generation of reactive oxygen species (ROS) under laser irradiation, thereby enabling effective photothermal and photodynamic combinatorial therapy. Following combined treatment, the activity and invasive capacity of hepatocellular carcinoma cells were markedly diminished, the development rate of the tumor was noticeably reduced, and the level of biological toxicity was low. Additionally, CsxWO3@NBs possess the capacity to serve as both a CT imaging agent and a contrast-enhanced ultrasound agent. Conclusion CsxWO3@NBs represent a promising theranostic agent for image-guided cancer therapy.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Kim HS, Seol JH, Hwang HH, Lee DY. Nanoarchitectured conjugates targeting angiogenesis: investigating heparin-taurocholate acid conjugates (LHT7) as an advanced anti-angiogenic therapy for brain tumor treatment. Biomater Res 2023; 27:89. [PMID: 37723574 PMCID: PMC10506202 DOI: 10.1186/s40824-023-00420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/19/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioblastoma is a highly malignant brain tumor associated with poor prognosis. Conventional therapeutic approaches have limitations due to their toxic effects on normal tissue and the development of tumor cell resistance. This study aimed to explore alternative mechanisms for glioblastoma treatment by targeting angiogenesis. METHODS The study investigated the anti-angiogenic properties of heparin in glioblastoma treatment. To overcome the limitations of heparin, a heparin-taurocholate conjugate (LHT7) was synthesized by conjugating heparin to taurocholic acid. The study utilized the U87MG human glioblastoma cell line and human umbilical vein endothelial cells (HUVEC) as experimental models. Cell viability assays and sprouting assays were performed to assess the effects of LHT7. Additionally, phosphorylation of angiogenesis-related proteins, such as phospho-ERK and phospho-VEGFR2, was measured. The anti-angiogenic effects of LHT7 were further evaluated using a glioblastoma orthotopic mouse model. RESULTS Treatment with LHT7 resulted in a dose-dependent reduction in cell viability in U87MG human glioblastoma cells. The sprouting of HUVEC cells was significantly decreased upon LHT7 treatment. Furthermore, LHT7 treatment led to a decrease in the phosphorylation of angiogenesis-related proteins, including phospho-ERK and phospho-VEGFR2. In the glioblastoma orthotopic mouse model, LHT7 exhibited anti-angiogenic effects, supporting its potential as a therapeutic agent. CONCLUSIONS The conjugation of heparin and taurocholic acid to create LHT7 offers several advantages over conventional therapeutic approaches for glioblastoma. LHT7 demonstrated anti-angiogenic properties, as evidenced by the reduction in cell viability and inhibition of endothelial cell sprouting. Moreover, LHT7 modulated the phosphorylation of angiogenesis-related proteins. These findings suggest that LHT7 holds promise as a medication for glioblastoma treatment, offering potential implications for improving patient outcomes.
Collapse
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jae Hak Seol
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Hae Hyun Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, Seoul, 07463, Republic of Korea.
| |
Collapse
|
3
|
Bartusik-Aebisher D, Woźnicki P, Dynarowicz K, Aebisher D. Photosensitizers for Photodynamic Therapy of Brain Cancers-A Review. Brain Sci 2023; 13:1299. [PMID: 37759900 PMCID: PMC10526171 DOI: 10.3390/brainsci13091299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
On average, there are about 300,000 new cases of brain cancer each year. Studies have shown that brain and central nervous system tumors are among the top ten causes of death. Due to the extent of this problem and the percentage of patients suffering from brain tumors, innovative therapeutic treatment methods are constantly being sought. One such innovative therapeutic method is photodynamic therapy (PDT). Photodynamic therapy is an alternative and unique technique widely used in dermatology and other fields of medicine for the treatment of oncological and nononcological lesions. Photodynamic therapy consists of the destruction of cancer cells and inducing inflammatory changes by using laser light of a specific wavelength in combination with the application of a photosensitizer. The most commonly used photosensitizers include 5-aminolevulinic acid for the enzymatic generation of protoporphyrin IX, Temoporfin-THPC, Photofrin, Hypericin and Talaporfin. This paper reviews the photosensitizers commonly used in photodynamic therapy for brain tumors. An overview of all three generations of photosensitizers is presented. Along with an indication of the limitations of the treatment of brain tumors, intraoperative photodynamic therapy and its possibilities are described as an alternative therapeutic method.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Mohamed AA, Caussat T, Kelly S, Johansen PM, Lucke-Wold B. Choroid plexus tumors: A spectrum from benign to malignant. TUMOR DISCOVERY 2023; 2:1057. [PMID: 37799733 PMCID: PMC10552314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Choroid plexus tumors (CPT) are believed to originate from outgrowths of the choroid plexus. Despite their broad spectrum of symptoms, invasive nature, and prognosis, most CPTs typically exhibit similar presentations due to their relationship with the cerebral ventricles, as well as the mechanical obstruction and mass effect associated with their growth. In addition, these tumors mainly affect the pediatric population, further complicating the differentiation between benign and malignant subtypes. The World Health Organization classifies CPTs into three grades, namely, grades I, II, or III, based on their mitotic activity, which determine the benign or malignant nature of the tumors. CPTs classified by the World Health Organization (WHO) include choroid plexus papillomas (CPP), atypical CPPs (aCPP), and malignant choroid plexus carcinomas (CPC). Choroid plexus adenomas represent an additional category of benign CPTs not officially classified by the WHO. Despite the variations in histology, immunohistochemistry, imaging, treatment, and prognosis, CPTs cannot be reliably distinguished based solely on clinical presentation. Therefore, in this review, we aim to provide a comprehensive overview of each tumor subtype, along with the current management approach and emerging treatments.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Thomas Caussat
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sophie Kelly
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Phillip M. Johansen
- Department of Neurosurgery, University of South Florida, Orlando, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
6
|
Wang Z, Tang XL, Zhao MJ, Zhang YD, Xiao Y, Liu YY, Qian CF, Xie YD, Liu Y, Zou YJ, Yang K, Liu HY. Biomimetic hypoxia-triggered RNAi nanomedicine for synergistically mediating chemo/radiotherapy of glioblastoma. J Nanobiotechnology 2023; 21:210. [PMID: 37408007 DOI: 10.1186/s12951-023-01960-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
Although RNA interference (RNAi) therapy has emerged as a potential tool in cancer therapeutics, the application of RNAi to glioblastoma (GBM) remains a hurdle. Herein, to improve the therapeutic effect of RNAi on GBM, a cancer cell membrane (CCM)-disguised hypoxia-triggered RNAi nanomedicine was developed for short interfering RNA (siRNA) delivery to sensitize cells to chemotherapy and radiotherapy. Our synthesized CCM-disguised RNAi nanomedicine showed prolonged blood circulation, high BBB transcytosis and specific accumulation in GBM sites via homotypic recognition. Disruption and effective anti-GBM agents were triggered in the hypoxic region, leading to efficient tumor suppression by using phosphoglycerate kinase 1 (PGK1) silencing to enhance paclitaxel-induced chemotherapy and sensitize hypoxic GBM cells to ionizing radiation. In summary, a biomimetic intelligent RNAi nanomedicine has been developed for siRNA delivery to synergistically mediate a combined chemo/radiotherapy that presents immune-free and hypoxia-triggered properties with high survival rates for orthotopic GBM treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Long Tang
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| | - Meng-Jie Zhao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China
| | - Yi-Ding Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Xiao
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Yang Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Fa Qian
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yan-Dong Xie
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan-Jie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
| | - Hong-Yi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Salamone TA, Rutigliano L, Pennacchi B, Cerra S, Matassa R, Nottola S, Sciubba F, Battocchio C, Marsotto M, Del Giudice A, Chumakov A, Davydok A, Grigorian S, Canettieri G, Agostinelli E, Fratoddi I. Thiol functionalised gold nanoparticles loaded with methotrexate for cancer treatment: From synthesis to in vitro studies on neuroblastoma cell lines. J Colloid Interface Sci 2023; 649:264-278. [PMID: 37348346 DOI: 10.1016/j.jcis.2023.06.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
HYPOTHESIS Colloidal gold nanoparticles (AuNPs) functionalised with hydrophilic thiols can be used as drug delivery probes, thanks to their small size and hydrophilic character. AuNPs possess unique properties for their use in nanomedicine, especially in cancer treatment, as diagnostics and therapeutic tools. EXPERIMENTS Thiol functionalised AuNPs were synthesised and loaded with methotrexate (MTX). Spectroscopic and morphostructural characterisations evidenced the stability of the colloids upon interaction with MTX. Solid state (GISAXS, GIWAXS, FESEM, TEM, FTIR-ATR, XPS) and dispersed phase (UV-Vis, DLS, ζ-potential, NMR, SAXS) experiments allowed to understand structure-properties correlations. The nanoconjugate was tested in vitro (MTT assays) against two neuroblastoma cell lines: SNJKP and IMR5 with overexpressed n-Myc. FINDINGS Molar drug encapsulation efficiency was optimised to be >70%. A non-covalent interaction between the π system and the carboxylate moiety belonging to MTX and the charged aminic group of one of the thiols was found. The MTX loading slightly decreased the structural order of the system and increased the distance between the AuNPs. Free AuNPs showed no cytotoxicity whereas the AuNPs-MTX nanoconjugate had a more potent effect when compared to free MTX. The active role of AuNPs was evidenced by permeation studies: an improvement on penetration of the drug inside cells was evidenced.
Collapse
Affiliation(s)
- Tommaso A Salamone
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Lavinia Rutigliano
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Beatrice Pennacchi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Stefania Nottola
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Martina Marsotto
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | | | - Andrei Chumakov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Helmholtz Zentrum Hereon, Notkestr. 85, 22607 Hamburg, Germany
| | - Souren Grigorian
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute of Physics, University of Siegen, Walter-Flex-Strasse 3, D-57068 Siegen, Germany
| | - Gianluca Canettieri
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; International Polyamines Foundation "ETS-ONLUS", Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
8
|
Kim HS, Park SC, Kim HJ, Lee DY. Inhibition of DAMP actions in the tumoral microenvironment using lactoferrin-glycyrrhizin conjugate for glioblastoma therapy. Biomater Res 2023; 27:52. [PMID: 37210579 DOI: 10.1186/s40824-023-00391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND High-mobility group box-1 (HMGB1) released from the tumor microenvironment plays a pivotal role in the tumor progression. HMGB1 serves as a damaged-associated molecular pattern (DAMP) that induces tumor angiogenesis and its development. Glycyrrhizin (GL) is an effective intracellular antagonist of tumor released HMGB1, but its pharmacokinetics (PK) and delivery to tumor site is deficient. To address this shortcoming, we developed lactoferrin-glycyrrhizin (Lf-GL) conjugate. METHODS Biomolecular interaction between Lf-GL and HMGB1 was evaluated by surface plasmon resonance (SPR) binding affinity assay. Inhibition of tumor angiogenesis and development by Lf-GL attenuating HMGB1 action in the tumor microenvironment was comprehensively evaluated through in vitro, ex vivo, and in vivo. Pharmacokinetic study and anti-tumor effects of Lf-GL were investigated in orthotopic glioblastoma mice model. RESULTS Lf-GL interacts with lactoferrin receptor (LfR) expressed on BBB and GBM, therefore, efficiently inhibits HMGB1 in both the cytoplasmic and extracellular regions of tumors. Regarding the tumor microenvironment, Lf-GL inhibits angiogenesis and tumor growth by blocking HMGB1 released from necrotic tumors and preventing recruitment of vascular endothelial cells. In addition, Lf-GL improved the PK properties of GL approximately tenfold in the GBM mouse model and reduced tumor growth by 32%. Concurrently, various biomarkers for tumor were radically diminished. CONCLUSION Collectively, our study demonstrates a close association between HMGB1 and tumor progression, suggesting Lf-GL as a potential strategy for coping with DAMP-related tumor microenvironment. HMGB1 is a tumor-promoting DAMP in the tumor microenvironment. The high binding capability of Lf-GL to HMGB1 inhibits tumor progression cascade such as tumor angiogenesis, development, and metastasis. Lf-GL targets GBM through interaction with LfR and allows to arrest HMGB1 released from the tumor microenvironment. Therefore, Lf-GL can be a GBM treatment by modulating HMGB1 activity.
Collapse
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Institute of Nano Science and Technology (INST), Hanyang University, and Elixir Pharmatech Inc, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Institute of Nano Science and Technology (INST), Hanyang University, and Elixir Pharmatech Inc, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Hae Jin Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Institute of Nano Science and Technology (INST), Hanyang University, and Elixir Pharmatech Inc, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Institute of Nano Science and Technology (INST), Hanyang University, and Elixir Pharmatech Inc, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST) & Institute For Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| |
Collapse
|
9
|
Kang D, Kim HS, Han S, Lee Y, Kim YP, Lee DY, Lee J. A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma. Nat Commun 2023; 14:2755. [PMID: 37179387 PMCID: PMC10183012 DOI: 10.1038/s41467-023-38451-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the strong absorption of water in the near-infrared (NIR) region near 1.0 μm, this wavelength is considered unsuitable as an imaging and analytical signal in biological environments. However, 1.0 μm NIR can be converted into heat and used as a local water-molecular heating strategy for the photothermal therapy of biological tissues. Herein, we describe a Nd-Yb co-doped nanomaterial (water-heating nanoparticles (NPs)) as strong 1.0 μm emissive NPs to target the absorption band of water. Furthermore, introducing Tm ions into the water-heating NPs improve the NIR lifetime, enabling the development of a NIR imaging-guided water-heating probe (water-heating NIR NPs). In the glioblastoma multiforme male mouse model, tumor-targeted water-heating NIR NPs reduce the tumor volume by 78.9% in the presence of high-resolution intracranial NIR long-lifetime imaging. Hence, water-heating NIR NPs can be used as a promising nanomaterial for imaging and photothermal ablation in deep-tissue-bearing tumor therapy.
Collapse
Affiliation(s)
- Dongkyu Kang
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohyun Han
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonju Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Pil Kim
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Gastrointestinally absorbable lactoferrin-heparin conjugate with anti-angiogenic activity for treatment of brain tumor. J Control Release 2023; 355:730-744. [PMID: 36764526 DOI: 10.1016/j.jconrel.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a central nervous system disease with poor prognosis. Curative treatments for GBM involve chemotherapy, radiotherapy, and surgical pathways. Recently, antiangiogenic therapy through medications has been tried to slow tumor growth, but the drugs can induce side effects. To overcome these limitations, we developed a new orally absorbable form of heparin that can attenuate angiogenic activity by binding to growth factors around the tumor tissue. We conjugated lactoferrin (Lf) to heparin because Lf can be orally absorbed, and it interacts with the lactoferrin receptor (Lf-R) expressed on the intestine, blood-brain barrier (BBB), and glioma tumor masses. We successfully conjugated Lf and heparin by amide bond formation, as evidenced by advanced physicochemical properties such as pharmacokinetics and stability in acidic condition. This new material inhibited angiogenesis in vitro without toxicity. In addition, Lf-heparin administered orally to GBM orthotopic mice was absorbed in the small intestine and delivered specifically to the brain tumor by receptor transcytosis (Lf-R). Lf-heparin further attenuated angiogenesis progression in GBM orthotopic mice. Based on these results, Lf-heparin shows potential as a new oral medication for treatment of glioblastoma.
Collapse
|
11
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
12
|
Miretti M, Graglia MAG, Suárez AI, Prucca CG. Photodynamic Therapy for glioblastoma: a light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
13
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
14
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
15
|
Meng Z, Wang B, Liu Y, Wan Y, Liu Q, Xu H, Liang R, Shi Y, Tu P, Wu H, Xu C. Mitochondria-targeting Polydopamine-coated Nanodrugs for Effective Photothermal- and Chemo- Synergistic therapies Against Lung Cancer. Regen Biomater 2022; 9:rbac051. [PMID: 35958515 PMCID: PMC9362997 DOI: 10.1093/rb/rbac051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Targeting mitochondria via nano platform emerged as an attractive anti-tumor pathway due to the central regulation role in cellar apoptosis and drug resistance. Here, a mitochondria-targeting nanoparticle (TOS-PDA-PEG-TPP) was designed to precisely deliver polydopamine (PDA) as the photothermal agent and alpha-tocopherol succinate (α-TOS) as the chemotherapeutic drug to the mitochondria of the tumor cells, which inhibits the tumor growth through chemo- and photothermal- synergistic therapies. TOS-PDA-PEG-TPP was constructed by coating PDA on the surface of TOS NPs self-assembled by α-TOS, followed by grafting PEG and triphenylphosphonium (TPP) on their surface to prolong the blood circulation time and target delivery of TOS and PDA to the mitochondria of tumor cells. In vitro studies showed that TOS-PDA-PEG-TPP could be efficiently internalized by tumor cells and accumulated at mitochondria, resulting in cellular apoptosis and synergistic inhibition of tumor cell proliferation. In vivo studies demonstrated that TOS-PDA-PEG-TPP could be efficiently localized at tumor sites and significantly restrain the tumor growth under NIR irradiation without apparent toxicity or deleterious effects. Conclusively, the combination strategy adopted for functional nanodrugs construction aimed at target-delivering therapeutic agents with different action mechanisms to the same intracellular organelles can be extended to other nanodrugs-dependent therapeutic systems.
Collapse
Affiliation(s)
- Ziyu Meng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Binchao Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Yejian Wan
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Huasheng Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Renchuan Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Peng Tu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Hong Wu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Chuan Xu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| |
Collapse
|
16
|
Li RT, Zhu YD, Li WY, Hou YK, Zou YM, Zhao YH, Zou Q, Zhang WH, Chen JX. Synergistic photothermal-photodynamic-chemotherapy toward breast cancer based on a liposome-coated core-shell AuNS@NMOFs nanocomposite encapsulated with gambogic acid. J Nanobiotechnology 2022; 20:212. [PMID: 35524270 PMCID: PMC9074336 DOI: 10.1186/s12951-022-01427-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
A multifunctional nanoplatform with core–shell structure was constructed in one-pot for the synergistic photothermal, photodynamic, and chemotherapy against breast cancer. In the presence of gambogic acid (GA) as the heat-shock protein 90 (HSP90) inhibitor and the gold nanostars (AuNS) as the photothermal reagent, the assembly of Zr4+ with tetrakis (4-carboxyphenyl) porphyrin (TCPP) gave rise to the nanocomposite AuNS@ZrTCPP-GA (AZG), which in turn, further coated with PEGylated liposome (LP) to enhance the stability and biocompatibility, and consequently the antitumor effect of the particle. Upon cellular uptake, the nanoscale metal − organic framework (NMOF) of ZrTCPP in the resulted AuNS@ZrTCPP-GA@LP (AZGL) could be slowly degraded in the weak acidic tumor microenvironment to release AuNS, Zr4+, TCPP, and GA to exert the synergistic treatment of tumors via the combination of AuNS-mediated mild photothermal therapy (PTT) and TCPP-mediated photodynamic therapy (PDT). The introduction of GA serves to reduce the thermal resistance of the cell to re-sensitize PTT and the constructed nanoplatform demonstrated remarkable anti-tumor activity in vitro and in vivo. Our work highlights a facile strategy to prepare a pH-dissociable nanoplatform for the effective synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Rong-Tian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yi-Dan Zhu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen-Ya Li
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Ying-Ke Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Yi-Ming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ying-Hua Zhao
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Quan Zou
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
17
|
Kim HS, Lee DY. Engineered Aurotherapy for the Multimodal Treatment of Glioblastoma. Brain Tumor Res Treat 2022; 10:215-220. [DOI: 10.14791/btrt.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Korea
- Elixir Pharmatech Inc., Seoul, Korea
| |
Collapse
|