1
|
Shahiwala A. Advancing drug delivery research: sustainable strategies for innovation and translation. Drug Deliv Transl Res 2025:10.1007/s13346-024-01767-8. [PMID: 39792336 DOI: 10.1007/s13346-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Sustainable systems are designed to promote lasting viability and resilience while reducing negative effects on the environment, society, and economy. Like many others, the drug delivery field is facing the challenges of the global environmental crisis. Despite its rapid growth and significant funding, there has been a noticeable slowdown in the rate of advancement, impacting the economy, society, and environment. This paper delves into sustainable strategies for drug delivery research, including reducing pill burden through controlled release systems, use of bio-degradable/absorbable polymers, reduction in excipient requirements and use of functional excipients, clinically viable drug delivery system designs, non-invasive/self-administration technologies, and use of relevant in vitro and in vivo tools and computational approaches. When adopted, these strategies can help researchers create widely available, reasonably priced, and ecologically friendly drug delivery systems, thereby advancing sustainable healthcare for all. The manuscript also advocates for funding policies that support sustainable drug delivery research. It underscores the need to integrate sustainability principles into drug delivery research to achieve the broader agenda of global sustainability and well-being, such as SDG 3 (Good Health and Well-being), SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation, and Infrastructure), and SDG 12 (Responsible Consumption and Production).
Collapse
Affiliation(s)
- Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, UAE.
| |
Collapse
|
2
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Malla R, Viswanathan S, Makena S, Kapoor S, Verma D, Raju AA, Dunna M, Muniraj N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers (Basel) 2024; 16:1463. [PMID: 38672545 PMCID: PMC11048531 DOI: 10.3390/cancers16081463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer persists as a global challenge necessitating continual innovation in treatment strategies. Despite significant advancements in comprehending the disease, cancer remains a leading cause of mortality worldwide, exerting substantial economic burdens on healthcare systems and societies. The emergence of drug resistance further complicates therapeutic efficacy, underscoring the urgent need for alternative approaches. Drug repurposing, characterized by the utilization of existing drugs for novel clinical applications, emerges as a promising avenue for addressing these challenges. Repurposed drugs, comprising FDA-approved (in other disease indications), generic, off-patent, and failed medications, offer distinct advantages including established safety profiles, cost-effectiveness, and expedited development timelines compared to novel drug discovery processes. Various methodologies, such as knowledge-based analyses, drug-centric strategies, and computational approaches, play pivotal roles in identifying potential candidates for repurposing. However, despite the promise of repurposed drugs, drug repositioning confronts formidable obstacles. Patenting issues, financial constraints associated with conducting extensive clinical trials, and the necessity for combination therapies to overcome the limitations of monotherapy pose significant challenges. This review provides an in-depth exploration of drug repurposing, covering a diverse array of approaches including experimental, re-engineering protein, nanotechnology, and computational methods. Each of these avenues presents distinct opportunities and obstacles in the pursuit of identifying novel clinical uses for established drugs. By examining the multifaceted landscape of drug repurposing, this review aims to offer comprehensive insights into its potential to transform cancer therapeutics.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Sathiyapriya Viswanathan
- Department of Biochemistry, ACS Medical College and Hospital, Chennai 600007, Tamil Nadu, India;
| | - Sree Makena
- Maharajah’s Institute of Medical Sciences and Hospital, Vizianagaram 535217, Andhra Pradesh, India
| | - Shruti Kapoor
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Deepak Verma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Manikantha Dunna
- Center for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500085, Telangana, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
4
|
Zhi L, Cheng C, Jing L, Zhi-Ping P, Lu Y, Yan T, Zhi-Gang W, Guo-Bing Y. Application of fluorocarbon nanoparticles of 131I-fulvestrant as a targeted radiation drug for endocrine therapy on human breast cancer. J Nanobiotechnology 2024; 22:107. [PMID: 38475902 DOI: 10.1186/s12951-024-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.
Collapse
Affiliation(s)
- Li Zhi
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Chen Cheng
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Luo Jing
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Peng Zhi-Ping
- Department of Nuclear Medicine Laboratory, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Lu
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tian Yan
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wang Zhi-Gang
- Department of Ultrasound Research Institute, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yin Guo-Bing
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
5
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
6
|
Bakhrushina EO, Mikhel IB, Buraya LM, Moiseev ED, Zubareva IM, Belyatskaya AV, Evzikov GY, Bondarenko AP, Krasnyuk II, Krasnyuk II. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024; 10:44. [PMID: 38247767 PMCID: PMC10815592 DOI: 10.3390/gels10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants-systems formed in the tumor due to a phase transition (sol-gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents.
Collapse
Affiliation(s)
- Elena O. Bakhrushina
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Iosif B. Mikhel
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Liliya M. Buraya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Egor D. Moiseev
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Irina M. Zubareva
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Anastasia V. Belyatskaya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Grigory Y. Evzikov
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | | | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Ivan I. Krasnyuk
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| |
Collapse
|
7
|
Eluu SC, Obayemi JD, Salifu AA, Yiporo D, Oko AO, Aina T, Oparah JC, Ezeala CC, Etinosa PO, Ugwu CM, Esimone CO, Soboyejo WO. In-vivo studies of targeted and localized cancer drug release from microporous poly-di-methyl-siloxane (PDMS) devices for the treatment of triple negative breast cancer. Sci Rep 2024; 14:31. [PMID: 38167999 PMCID: PMC10761815 DOI: 10.1038/s41598-023-50656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- S C Eluu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA
| | - A A Salifu
- Department of Engineering, Morrissey College of Arts and Science, Boston College, Boston, USA
| | - D Yiporo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal, University of Health Sciences, Uburu, Nigeria
| | - T Aina
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - J C Oparah
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - C C Ezeala
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - P O Etinosa
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
| | - C M Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - C O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA.
- Department of Engineering, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, NY, 13502, USA.
| |
Collapse
|
8
|
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29:103851. [PMID: 38092146 DOI: 10.1016/j.drudis.2023.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells. The tumor cells internalize CS-based nanoparticles through endocytosis. Moreover, chitosan nanocarriers can also induce phototherapy-mediated tumor ablation. Smart and multifunctional types of CS nanoparticles, including pH-, light- and redox-responsive nanoparticles, can be used to improve the potential for breast cancer removal. In addition, the acceleration of immunotherapy by CS nanoparticles has also been achieved, and there is potential to develop CS-nanoparticle hydrogels that can be used to suppress tumorigenesis.
Collapse
Affiliation(s)
- Tianfeng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China; Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yuru Shang
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
9
|
Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydr Polym 2023; 315:120972. [PMID: 37230614 DOI: 10.1016/j.carbpol.2023.120972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Cancer therapy continues to be a major global concern, with conventional treatments suffering from low efficacy, untargeted drug delivery, and severe side effects. Recent research in nanomedicine suggests that nanoparticles' unique physicochemical properties can be leveraged to surmount the limitations of conventional cancer treatment. Chitosan-based nanoparticles have gained significant attention due to their high drug-carrying capacity, non-toxicity, biocompatibility, and long circulation time. Chitosan is utilized in cancer therapies as a carrier to accurately deliver active ingredients to tumor sites. This review focuses on clinical studies and current market offerings of anticancer drugs. The unique nature of tumor microenvironments presents new opportunities for the development of smart drug delivery systems, and this review explores the design and preparation of chitosan-based smart nanoparticles. Further, we discuss the therapeutic efficacies of these nanoparticles based on various in vitro and in vivo findings. Finally, we present a forward-looking perspective on the challenges and prospects of chitosan-based nanoparticles in cancer therapy, intending to provide fresh ideas for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
10
|
Verma R, Rani V, Kumar M. In-vivo anticancer efficacy of self-targeted methotrexate-loaded polymeric nanoparticles in solid tumor-bearing rat. Int Immunopharmacol 2023; 119:110147. [PMID: 37044039 DOI: 10.1016/j.intimp.2023.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Here, cytotoxicity and antitumor efficacy against a chemically (N-methyl-N-nitrosourea) generated mammary tumor in rats were assessed using methotrexate-loaded chitosan nanoparticles (Meth-Cs-NPs). Meth-Cs-NPs intravenous administrated resulted in noticeably decreased tumor incidence, multiplicity, and weight. Further, kidney function tests for the treated groups resulted in noticeably decreased ALP (Meth-Cs-NPs; 244 ± 15, diseases control; 403 ± 14 U/L), Creatinine (Meth-Cs-NPs; 0.81 ± 0.05, diseases control; 2 ± 0.05 mg/dl), and Urea (Meth-Cs-NPs; 56.62 ± 5, diseases control; 113 ± 6 mg/dl) levels, close to a normal control group. Similarly, liver function tests showed significantly decreased serum biomarkers, SGPT (Meth-Cs-NPs; 40 ± 1.8, diseases control; 84 ± 1.9 U/L) and SGOT (Meth-Cs-NPs; 15 ± 2, diseases control; 55 ± 4 U/L) levels in treated groups as compared to the untreated group (diseases control). From the results, pro-inflammatory cytokines were also markedly reduced in the treated group such as, TNF-α (Meth-Cs-NPs; 17.31 ± 1.15, diseases control; 36.9 ± 5 pg/mL), IL-1β (Meth-Cs-NPs; 433.3 ± 66.5, diseases control; 1540 ± 131.1 pg/mL), and IL-6 (Meth-Cs-NPs; 1515 ± 53, diseases control; 2200.6 ± 69 pg/mL) levels. Whereas Meth-Cs-NPs not only helped in lowering tumor multiplicity rates but also decrease inflammation. The studies could be successfully performed in chemically induced mammary tumors due to their easy, quick tumor growth and low mortality rates in rat models. According to the current study, Meth-Cs-NPs have high treatment potency and represent a possible therapeutic alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Rinki Verma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India
| | - Varsha Rani
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India
| | - Manoj Kumar
- Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
11
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
12
|
Xu X, Li Q, Dong W, Zhao G, Lu Y, Huang X, Liang X. Cinnamon cassia oil chitosan nanoparticles: Physicochemical properties and anti-breast cancer activity. Int J Biol Macromol 2022; 224:1065-1078. [DOI: 10.1016/j.ijbiomac.2022.10.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
13
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
14
|
Hosseini M, Ahmadi Z, Kefayat A, Molaabasi F, Ebrahimpour A, Naderi Khojasteh Far Y, Khoobi M. Multifunctional Gold Helix Phototheranostic Biohybrid That Enables Targeted Image-Guided Photothermal Therapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37447-37465. [PMID: 35943871 DOI: 10.1021/acsami.2c10028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The preparation of multifunctional smart theranostic systems is commonly achieved through complicated strategies, limiting their biomedical applications. Spirulina platensis (SP) microalgae, as a natural helix with some of the intrinsic theranostic functionalities (e.g., fluorescent and photosensitizer pigments), not only facilitates the fabrication process but also guarantees their biosafety for clinical applications. Herein, the helical architecture of gold nanoparticles (AuNPs) based on a SP biotemplate was engineered as a safe, biodegradable, and tumor-targeted biohybrid for imaging-guided photothermal therapy (PTT) to combat triple-negative breast cancer. The quasi-spherical AuNPs were embedded throughout the SP cell (Au-SP) with minimally involved reagents, only by controlling the original morphological stability of SP through pH adjustment of the synthesis media. SP thiolation increased the localization of AuNPs selectively on the cell wall without using a reducing agent (Au-TSP). SP autofluorescence, along with the high X-ray absorption of AuNPs, was employed for dual-modal fluorescence and computed tomography (FL/CT) imaging. Furthermore, the theranostic efficacy of Au-SP was improved through a targeting process with folic acid (Au-SP@CF). High tumor inhibition effects were obtained by the excellent photothermal performance of Au-SP@CF in both in vitro and in vivo analyses. Of particular note, a comparison of the photothermal effect of Au-SP@CF with the naked SP and calcined form of Au-SP@CF not only indicated the key role of the helical architecture of AuNPs in achieving a high photothermal effect but also led to the formation of new gold microspiral biohybrids (Au-MS) over the calcination process. In short, well-controllable immobilization of AuNPs, appropriate biodegradability, good hemocompatibility, long-term biosafety, accurate imaging, high tumor suppression, and low tumor metastasis effects under laser irradiation are an array of intriguing attributes, making the proposed biohybrid a promising theranostic system for FL/CT-imaging-guided PTT.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amirhosein Kefayat
- Cancer Prevention Research Center, Department of Oncology, Isfahan University of Medical Science, Isfahan 81746-73461, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Breast Cancer Research Center, Department of Interdisciplinary Technologies, Academic Center for Education, Culture and Research, Motamed Cancer Institute, Tehran 15179-64311, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| | - Yousef Naderi Khojasteh Far
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran 15179-64311, Iran
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| |
Collapse
|
15
|
Lazer LM, Kesavan Y, Gor R, Ramachandran I, Pathak S, Narayan S, Anbalagan M, Ramalingam S. Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles. Colloids Surf B Biointerfaces 2022; 217:112612. [PMID: 35738074 DOI: 10.1016/j.colsurfb.2022.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023]
Abstract
The cancer stem cell (CSC) hypothesis is an evolving oncogenesis concept. CSCs have a distinct ability to self-renew themselves and also give rise to a phenotypically diverse population of cells. Targeting CSCs represents a promising strategy for cancer treatment. Plant-derived compounds are potent in restricting the expansion of CSCs. DCLK1 has been already reported as a colon CSC specific marker. Nanoparticles can effectively inhibit multiple types of CSCs by targeting specific markers. We have synthesized DCLK1 functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles (CFH-DCLK1), specifically to target CSCs. In this regard, we have performed proliferation assay, colony formation assay, cell migration assay, apoptosis assay, flow cytometry analysis, real-time RT- PCR and western blot analyses to determine the effect of CFH-DCLK1 and CFH nanoparticles in HCT116-colon cancer cells. In our study, we have determined the median inhibitory concentration (IC50) of CFH (47.8 µM) and CFH-DCLK1 (4.8 µM) nanoparticles in colon cancer cells. CFH-DCLK1 nanoparticles induced apoptosis and inhibited the migration and invasion of colon cancer cells. Real time PCR and western blot results have demonstrated that the treatment with CFH-DCLK1 nanoparticles significantly reduced the expression of CSC markers such as DCLK1, STAT1 and NOTCH1 compared to the CFH alone in HCT116 colon cancer cells. Finally, in the 3D spheroid model, CFH-DCLK1 nanoparticles significantly inhibited the colonosphere growth. Overall, our results highlight the effectiveness of CFH-DCLK1 nanoparticles in targeting the colon cancer cells and CSCs. This study would lead to the development of therapies targeting both cancer cells and CSCs simultaneously using nanoformulated drugs, which could bring changes in the current cancer treatment strategies.
Collapse
Affiliation(s)
- Lizha Mary Lazer
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Yasodha Kesavan
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Muralidharan Anbalagan
- Structural & Cellular Biology, Pre-clinical small animal Imaging Facility, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India.
| |
Collapse
|