1
|
Li Y, Hu Y, Kamal Z, Chen Y, Xue X, Yao S, Zhao H, Jia M, Li Y, Wang Z, Li M, Chen Z. Optimization of Dendritic Polypeptide Delivery System for Antisense Antibacterial Agents Targeting ftsZ. ACS OMEGA 2024; 9:20966-20975. [PMID: 38764644 PMCID: PMC11097154 DOI: 10.1021/acsomega.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
There is an urgent requirement for a novel treatment strategy for drug-resistant Staphylococcus aureus (S. aureus) infection. Antisense antimicrobials are promising antimicrobials, and efficient drug delivery systems are necessary for the further development of antisense antimicrobials. To develop new antisense drugs and further improve delivery efficiency and safety, we designed and screened new antisense sequences and optimized dendritic polypeptide nanoparticles (DP-AD) discovered in previous studies. The N/P ratio is optimized from 8:1 to 6:1, and the positive charge number of the optimized DP-AD is studied comprehensively. The results show that the N/P ratio and positive charge number have no significant effect on the particle size distribution and transport efficiency of DP-AD. Reducing the N/P ratio can significantly reduce the cytotoxicity of DP-AD, but it does not affect its delivery efficiency and antibacterial activity. However, in drug-resistant strains, the antibacterial activity of DP-AD76:1 with 10 positive charges is higher than that of DP-AD86:1 with 8 positive charges. Our research discovered a novel ASOs targeting ftsZ and concluded that DP-AD76:1 with 10 positive charges was the optimal choice at the current stage, which provided a promising strategy for the treatment of drug-resistant S. aureus.
Collapse
Affiliation(s)
- Yaoyao Li
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Yue Hu
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Zul Kamal
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18000, Khyber Pakhtunkhwa, Paksitan
- School
of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yamiao Chen
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoyan Xue
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Shuting Yao
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Hui Zhao
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Min Jia
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Li
- Medical
College, Xi’an Peihua University, Xi’an 710061, China
| | - Zheng Wang
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
| | - Mingkai Li
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Chen
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Promising strategies employing nucleic acids as antimicrobial drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102122. [PMID: 38333674 PMCID: PMC10850860 DOI: 10.1016/j.omtn.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Antimicrobial resistance (AMR) is a growing concern because it causes microorganisms to develop resistance to drugs commonly used to treat infections. This results in increased difficulty in treating infections, leading to higher mortality rates and significant economic effects. Investing in new antimicrobial agents is, therefore, necessary to prevent and control AMR. Antimicrobial nucleic acids have arisen as potential key players in novel therapies for AMR infections. They have been designed to serve as antimicrobials and to act as adjuvants to conventional antibiotics or to inhibit virulent mechanisms. This new category of antimicrobial drugs consists of antisense oligonucleotides and oligomers, DNAzymes, and transcription factor decoys, differing in terms of structure, target molecules, and mechanisms of action. They are synthesized using nucleic acid analogs to enhance their resistance to nucleases. Because bacterial envelopes are generally impermeable to oligonucleotides, delivery into the cytoplasm typically requires the assistance of nanocarriers, which can affect their therapeutic potency. Given that numerous factors contribute to the success of these antimicrobial drugs, this review aims to provide a summary of the key advancements in the use of oligonucleotides for treating bacterial infections. Their mechanisms of action and the impact of factors such as nucleic acid design, target sequence, and nanocarriers on the antimicrobial potency are discussed.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|