1
|
Ma J, Yao Q, Lv S, Yi J, Zhu D, Zhu C, Wang L, Su S. Integrated triple signal amplification strategy for ultrasensitive electrochemical detection of gastric cancer-related microRNA utilizing MoS 2-based nanozyme, hybridization chain reaction, and horseradish peroxidase. J Nanobiotechnology 2024; 22:596. [PMID: 39354525 PMCID: PMC11445865 DOI: 10.1186/s12951-024-02848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Early diagnosis and treatment of gastric cancer (GC) play a vital role in improving efficacy, reducing mortality and prolonging patients' lives. Given the importance of early detection of gastric cancer, an electrochemical biosensor was developed for the ultrasensitive detection of miR-19b-3p by integrating MoS2-based nanozymes, hybridization chain reaction (HCR) with enzyme catalyzed reaction. The as-prepared MoS2-based nanocomposites were used as substrate materials to construct nanoprobes, which can simultaneously load probe DNA and HCR initiator for signal amplification. Moreover, the MoS2-based nanocomposites are also employed as nanozymes to amplify electrochemical response. The presence of miR-19b-3p induced the assembly of MoS2-based nanoprobes on the electrode surface, which can activate in-situ HCR reaction to load a large number of horseradish peroxidase (HRP) for signal amplification. Coupling with the co-catalytic ability of HRP and MoS2-based nanozymes, the designed electrochemical biosensor can detect as low as 0.7 aM miR-19b-3p. More importantly, this biosensor can efficiently analyze miR-19b-3p in clinical samples from healthy people and gastric cancer patients due to its excellent sensitivity and selectivity, suggesting that this biosensor has a potential application in early diagnosis of disease.
Collapse
Affiliation(s)
- Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Shanghai Geriatric Medical Center, Shanghai, 201104, China
| | - Suo Lv
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiasheng Yi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
2
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
3
|
Chang J, Zhang L, Li Z, Qian C, Du J. Exosomal non-coding RNAs (ncRNAs) as potential biomarkers in tumor early diagnosis. Biochim Biophys Acta Rev Cancer 2024; 1879:189188. [PMID: 39313040 DOI: 10.1016/j.bbcan.2024.189188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Exosomes, extracellular vesicles carrying a cargo rich in various non-coding RNAs (ncRNAs), have emerged as crucial mediators of intercellular communication. Their stability, abundance, and specificity make exosomal ncRNAs promising candidates for biomarker discovery. The discovery of exosomal ncRNAs has unveiled a novel avenue for the exploration of biomarkers in tumor early diagnosis. This review consolidates current knowledge on the role of exosomal ncRNAs as potential biomarkers in the early detection of various tumors. We provide an overview of recent studies demonstrating the diagnostic potential of exosomal ncRNAs across multiple cancer types, highlighting their sensitivity, specificity, and feasibility for early detection. This review underscores the potential of exosomal ncRNAs as non-invasive biomarkers for early tumor diagnosis, paving the way for improved clinical outcomes through timely intervention and personalized management strategies.
Collapse
Affiliation(s)
- Jingyue Chang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Lingquan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Zeting Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen 518172, Guangdong, China.
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| |
Collapse
|
4
|
Zhao J, Zhu W, Mao Y, Li X, Ling G, Luo C, Zhang P. Unignored intracellular journey and biomedical applications of extracellular vesicles. Adv Drug Deliv Rev 2024; 212:115388. [PMID: 38969268 DOI: 10.1016/j.addr.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The intracellular journey of extracellular vesicles (EVs) cannot be ignored in various biological pathological processes. In this review, the biogenesis, biological functions, uptake pathways, intracellular trafficking routes, and biomedical applications of EVs were highlighted. Endosomal escape is a unique mode of EVs release. When vesicles escape from endosomes, they avoid the fate of fusing with lysosomes and being degraded, thus having the opportunity to directly enter the cytoplasm or other organelles. This escape mechanism is crucial for EVs to deliver specific signals or substances. The intracellular trafficking of EVs after endosomal escape is a complex and significant biological process that involves the coordinated work of various cellular structures and molecules. Through the in-depth study of this process, the function and regulatory mechanism of EVs are fully understood, providing new dimensions for future biomedical diagnosis and treatment.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenjing Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuxuan Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
5
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
7
|
Li W, Liu G, He F, Hou S. Molecularly imprinted electrochemiluminescence sensor based on a novel luminol derivative for detection of human serum albumin via click reaction. Mikrochim Acta 2024; 191:151. [PMID: 38386184 DOI: 10.1007/s00604-024-06215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
A novel luminol derivative of N-(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)acrylamide (DTA) with excellent luminescence efficiency was designed and synthesized. Furthermore, a molecularly imprinted electrochemiluminescence sensor (MIECLS) was fabricated to detect ultratrace levels of human serum albumin (HSA) with high sensitivity and selectivity via a click reaction. The molecularly imprinted polymers (MIPs) were formed on the electrode surface via electropolymerization with HSA as a template molecule and catechol as a monomer. In the detection process, the -SH group of HSA on the electrode and the C = C bond of acryloyl group in DTA formed a new C-S bond via the Michael addition reaction to construct the MIECLS. The higher the concentration of HSA, the greater electrochemiluminescence (ECL) intensity measured. Taking advantage of MIECLS for ECL detection (scanning potential, - 0.4 to 0.5 V), there was a good linear relationship between ECL intensity and the logarithm of HSA concentration in the range 5 × 10-9 to 1 × 10-13 mg mL-1. The limit of detection (LOD) of the sensor was 1.05 × 10-15 mg mL-1. The sensor exhibited outstanding selectivity and stability. The sensor was applied to detect HSA in human serum with good recoveries of 97.7-105.2%. The concentration of HSA was detected by electrochemical method using the gating effect of MIP.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Guangyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Fang He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Shili Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
8
|
Nianyong Y, Li G. Comprehensive analysis reveals the involvement of hsa_circ_0037858/miR-5000- 3p/FMR1 axis in malignant metastasis of clear cell renal cell carcinoma. Aging (Albany NY) 2023; 15:5399-5411. [PMID: 37379126 PMCID: PMC10333075 DOI: 10.18632/aging.204790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 06/30/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogenous tumor with high metastatic potential. Circular RNAs (circRNAs) play key roles in cancer initiation and progression. However, the knowledge of circRNA in ccRCC metastasis is still inadequate. In this study, a series of in silico analyses and experimental validation were employed. The differentially expressed circRNAs (DECs) between ccRCC and normal or metastatic ccRCC tissues were screened out using GEO2R. Hsa_circ_0037858 was identified as the most potential circRNA related to ccRCC metastasis, which was significantly downregulated in ccRCC compared with normal and was also markedly decreased in metastatic ccRCC compared with primary ccRCC. The structural pattern of hsa_circ_0037858 presented several microRNA response elements and four binding miRNAs of hsa_circ_0037858, consisting of miR-3064-5p, miR-6504-5p, miR-345-5p and miR-5000-3p, were predicted using CSCD and starBase. Among them, miR-5000-3p with high expression and statistical diagnostic value was considered as the most potential binding miRNA of hsa_circ_0037858. Then, protein-protein interaction analysis revealed a close linkage among the target genes of miR-5000-3p and the top 20 hub genes among them were identified. Based on node degree, MYC, RHOA, NCL, FMR1 and AGO1 were ranked as the top 5 hub genes. FMR1 was identified as the most potential downstream gene of hsa_circ_0037858/miR-5000-3p axis according to expression, prognosis and correlation analysis. Moreover, hsa_circ_0037858 suppressed in vitro metastasis and enhanced FMR1 expression in ccRCC, which could be markedly reversed by introduction of miR-5000-3p overexpression. Collectively, we elucidated a potential hsa_circ_0037858/miR-5000-3p/FMR1 axis involved in ccRCC metastasis.
Collapse
Affiliation(s)
- Yuan Nianyong
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Fuyang, Hangzhou 311400, China
| | - Guowei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Fuyang, Hangzhou 311400, China
| |
Collapse
|
9
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|