1
|
Khandelwal D, Bhattacharya A, Kumari V, Gupta SS, Ranjan KR, Mishra V. Leveraging nanomaterials for ultrasensitive biosensors in early cancer detection: a review. J Mater Chem B 2024. [PMID: 39635753 DOI: 10.1039/d4tb02107j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cancer remains a major global health challenge with a high mortality rate, as evidenced by the rise in new cases every year. Conventional diagnostic methods like PET scans, MRIs, and biopsies, despite being widely used, suffer from significant drawbacks such as high radiation exposure, difficulty in distinguishing malignant from benign tumors, and invasiveness. Early detection, which is crucial for improving treatment outcomes and survival rates, is hindered by the asymptomatic nature of early-stage cancer and the limitations of current diagnostic tools. Cancer biomarkers, detectable in body fluids, offer valuable diagnostic information, and recent advances in nanotechnology have led to the development of highly sensitive nano-biosensors. This review explores recent advancements (2022-2024) in the field of ultrasensitive nano-biosensors, emphasizing the strategic integration of nanomaterials to enhance sensitivity and accuracy in cancer biomarker detection. It highlights how precise nanomaterial positioning in sensor components like electrodes and bioreceptors enables early cancer diagnosis at low biomarker concentrations. These innovations underscore the transformative potential of nanomaterials in revolutionizing early cancer diagnostics, improving patient care, and enhancing survival outcomes.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Aheli Bhattacharya
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vanshika Kumari
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | | | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| |
Collapse
|
2
|
Zhang W, Zhao C, Jia H, Liu T, Yang J, Wu P, Mu X. Biomarker detection based on nanoparticle-induced ultrasonic Rayleigh scattering. MICROSYSTEMS & NANOENGINEERING 2024; 10:182. [PMID: 39632870 PMCID: PMC11618333 DOI: 10.1038/s41378-024-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 12/07/2024]
Abstract
Ultrasonic biochemical detection is important for biomarker detection, drug monitoring, and medical diagnosis, as it can predict disease progression and enable effective measures to be taken in a timely manner. However, the ultrasonic technology currently used for biochemical marker detection is directly modified on the surface of the device. The associated test methods are costly and unreliable while having poor repeatability; therefore, they cannot achieve low-cost rapid testing. In this study, a detection mechanism based on the Rayleigh scattering of acoustic waves caused by nanoparticles, which causes changes in the received sound pressure, was developed for the first time. The modification of antibodies on an insertable substrate decouples the functionalization step from the sensor surface and facilitates the application of capacitive micromachined ultrasonic transducers (CMUTs) in conjunction with Au nanoparticles (AuNPs) for CA19-9 cancer antigen detection. A corresponding detection theory was established, and the relevant parameters of the theoretical formula were verified using different nanoparticles. Using our fabricated CMUT chip with a resonant frequency of 1 MHz, the concentrations and substances of the CA19-9 antigen markers were successfully measured. In the concentration range of 0.1-1000 U/mL, the receiving voltage decreased with increasing concentration. Further investigations revealed that the influence of other interfering markers in the human body can be ignored, demonstrating the feasibility and robustness of biochemical detection based on CMUTs combined with nanoparticles.
Collapse
Affiliation(s)
- Wangyang Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Chaoshan Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Haoliang Jia
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and International Research and Development Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Dhiman R, Bazad N, Mukherjee R, Himanshu, Gunjan, Leal E, Ahmad S, Kaur K, Raj VS, Chang CM, Pandey RP. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. DISCOVER NANO 2024; 19:143. [PMID: 39243326 PMCID: PMC11380656 DOI: 10.1186/s11671-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.
Collapse
Affiliation(s)
- Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Bazad
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Riya Mukherjee
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Himanshu
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Gunjan
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, Brazil
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Kingdom of Saudi Arabia
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Chung-Ming Chang
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Laboratory Animal Center, Chang Gung University, Taoyuan City, Taiwan, ROC.
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
4
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Meivita MP, Go SX, Mozar FS, Li L, Tan YS, Bajalovic N, Loke DK. Shape complementarity processes for ultrashort-burst sensitive M13-PEG-WS 2-powered MCF-7 cancer cell sensors. NANOSCALE 2023; 15:16658-16668. [PMID: 37800342 DOI: 10.1039/d3nr03573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS2), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), viz., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS2, through shape-complementarity phenomena, and developed a sensor system, i.e., the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per μL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 μs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.
Collapse
Affiliation(s)
- Maria P Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Shao-Xiang Go
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Fitya S Mozar
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
6
|
Alrosan AZ, Alrosan K, Heilat GB, Alsharedeh R, Abudalo R, Oqal M, Alqudah A, Elmaghrabi YA. Potential roles of NEDD4 and NEDD4L and their utility as therapeutic targets in high‑incidence adult male cancers (Review). Mol Clin Oncol 2023; 19:68. [PMID: 37614371 PMCID: PMC10442760 DOI: 10.3892/mco.2023.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The term 'cancer' refers to >100 disorders that progressively manifest over time and are characterized by uncontrolled cell division. Although malignant growth can occur in virtually any human tissue, the underlying mechanisms underlying all forms of cancer are consistent. The International Agency for Research on Cancer's annual GLOBOCAN 2020 report provided an update on the global cancer incidence and mortality. Excluding non-melanoma skin cancer, the report predicts that there will be 19.3 million new cancer cases and >10 million cancer-related fatalities in 2023. Lung, prostate, and colon cancers are the most prevalent and lethal cancers in males. It was recognized that post-translational modifications (PTMs) of proteins are necessary for almost all cellular biological processes, as well as in cancer development and metastasis to other bodily organs. Thus, PTMs have a considerable impact on how proteins behave. Various PTMs may have harmful roles by affecting the hallmarks of cancer, metabolism and the regulation of the tumor microenvironment. PTMs and genetic changes/mutations are essential in carcinogenesis and cancer development. A pivotal PTM mechanism is protein ubiquitination. Of note, the rate-limiting stage of the protein ubiquitination cascade is hypothesized to be E3-ligase-mediated ubiquitination. Numerous studies revealed that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) E3 ligase is among the E3 ubiquitin ligases that have essential roles in cellular processes. It regulates protein degradation and substrate ubiquitination. In addition, it has been shown that NEDD4 primarily functions as an oncogene in various malignancies but can also act as a tumor suppressor in certain types of tumor. In the present review, the roles of NEDD4 as an anticancer protein in various high-incidence male malignancies and the significance of NEDD4 as a potential cancer therapeutic target are discussed. In addition, the targeting of NEDD4 as a therapeutic strategy for the treatment of human malignancies is explored.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rawan Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The Yarmouk University, Irbid 21163, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | |
Collapse
|
7
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zivar Nejad Ebrahimi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Mishra Y, Chattaraj A, Mishra V, Ranjan A, Tambuwala MM. Aptamers Versus Vascular Endothelial Growth Factor (VEGF): A New Battle against Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:849. [PMID: 37375796 DOI: 10.3390/ph16060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is one of the diseases that causes a high mortality as it involves unregulated and abnormal cell growth proliferation that can manifest in any body region. One of the typical ovarian cancer symptoms is damage to the female reproductive system. The death rate can be reduced through early detection of the ovarian cancer. Promising probes that can detect ovarian cancer are suitable aptamers. Aptamers, i.e., so-called chemical antibodies, have a strong affinity for the target biomarker and can typically be identified starting from a random library of oligonucleotides. Compared with other probes, ovarian cancer targeting using aptamers has demonstrated superior detection effectiveness. Various aptamers have been selected to detect the ovarian tumor biomarker, vascular endothelial growth factor (VEGF). The present review highlights the development of particular aptamers that target VEGF and detect ovarian cancer at its earliest stages. The therapeutic efficacy of aptamers in ovarian cancer treatment is also discussed.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
9
|
Lu C, Zandieh M, Zheng J, Liu J. Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. NANOSCALE 2023; 15:8189-8196. [PMID: 37093157 DOI: 10.1039/d3nr01098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peroxidase-based assays are the most extensively used in bioanalytical sensors because of their simple colorimetric readout and high sensitivity owing to enzymatic signal amplification. To improve the stability, modification, and cost of protein-based enzymes, such as horseradish peroxidase (HRP), various enzyme mimics, such as DNAzymes and nanozymes, have emerged over the last few decades. In this study, we compared the peroxidase activities of HRP, a G-quadruplex (G4)-hemin DNAzyme, and Fe3O4 nanozymes in terms of activity and stability under different conditions. The reactions were much slower at pH 7 than at pH 4. At pH 4, the turnover rate of HRP (375 s-1) was faster than that of G4 DNAzyme (0.14 s-1) and Fe3O4 (6.1 × 10-4 s-1, calculated by surface Fe concentration). When normalized to mass concentrations, the trend was the same. Through observation of the reaction for a long time of 2 h, the changes in the color and UV-vis spectra were also different for these catalysts, indicating different reaction mechanisms among these catalysts. Moreover, different buffers and nanozyme sizes were found to influence the activity of the catalysts. Fe3O4 showed the highest stability compared to HRP and G4 DNAzyme after a catalytic reaction or incubation with H2O2 for a few hours. This study helps to understand the properties of catalysts and the development of novel catalysts with enzyme-mimicking activities for application in various fields.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
10
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|