1
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University 75123 Uppsala, Sweden.
| |
Collapse
|
2
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
3
|
Buttiens K, Maksoudian C, Perez Gilabert I, Rios Luci C, Manshian BB, Soenen SJ. Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66-83. [PMID: 38163254 DOI: 10.1021/acsami.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Over the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress. EVs are currently explored for targeted delivery of therapeutic agents, including nanoformulations, to treat and diagnose cancer or other diseases. Here, we aimed to investigate whether nanomaterials could have a possible impact on EV functionality, their safety, and whether EVs can play a role in nanomaterial toxicity profiles. To evaluate this, the impact of inorganic nanomaterial administration on EVs derived from murine melanoma and human breast cancer cells was tested. Cells were incubated with subtoxic concentrations of 4 different biomedically relevant inorganic nanoparticles (NPs): gold, silver, silicon dioxide, or iron oxide. The results displayed a clear NP and cell-type-dependent effect on increasing or decreasing EV secretion. Furthermore, the expression pattern of several EV-derived miRNAs was significantly changed upon NP exposure, compared to nontreated cells. Detailed pathway analysis and additional studies confirmed that EVs obtained from NP-exposed cells could influence immunological responses and cellular physiology. Together, these data reveal that NPs can have wide-ranging effects which can result in toxicity concerns or enhanced therapeutic potential as a secondary enhanced effect mediated and enhanced by EVs.
Collapse
Affiliation(s)
- Kiana Buttiens
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
4
|
Izci M, Maksoudian C, Gonçalves F, Pérez Gilabert I, Rios Luci C, Bolea-Fernandez E, Vanhaecke F, Manshian BB, Soenen SJ. The Efficacy of Nanoparticle Delivery to Hypoxic Solid Tumors by ciRGD Co-Administration Depends on Neuropilin-1 and Neutrophil Levels. Adv Healthc Mater 2023; 12:e2300594. [PMID: 37247322 DOI: 10.1002/adhm.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Indexed: 05/31/2023]
Abstract
The ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies. The effect depends on the level of tumor perfusion, hypoxia, neutrophil levels, and vessel permeability. This work shows that upon characterizing tumors for these parameters, conditions can be selected that can optimally benefit from ciRGD co-administration as a means to improve NP delivery to solid tumors.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Filipa Gonçalves
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Irati Pérez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Eduardo Bolea-Fernandez
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| |
Collapse
|
5
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
6
|
Sultana R, Yadav D, Puranik N, Chavda V, Kim J, Song M. A Review on the Use of Gold Nanoparticles in Cancer Treatment. Anticancer Agents Med Chem 2023; 23:2171-2182. [PMID: 37842886 DOI: 10.2174/0118715206268664231004040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Zoology, SKM Govt College, Nawapara, Raipur, 493881, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, 462026, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| |
Collapse
|