1
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
5
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Wen J, Chen Y, Liao C, Ma X, Wang M, Li Q, Wang D, Li Y, Zhang X, Li L, Zhou H, Zou J, Liu L, Peng D. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells. Cancer Lett 2023; 575:216407. [PMID: 37769796 DOI: 10.1016/j.canlet.2023.216407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Most patients with acute myeloid leukemia (AML) relapse eventually because of the inability to effectively eliminate leukemia stem cells (LSCs), prompting the search of new therapies to eradicate LSCs. Our previous study demonstrated that miR-34c-5p promotes the clearance of LSCs in an AML mouse model, highlighting its potential as a therapeutic target for eradicating LSCs, but the effective delivery of miR-34c-5p to LSCs remains a great challenge. Here, we employed simultaneous two-step modifications to engineer mesenchymal stem cells (MSCs) and MSC-derived exosomes to create exosomes overexpressing the fused protein lysosome-associated membrane protein 2-interleukin 3 (Lamp2b-IL3) and hematopoietic cell E-selectin/L-selectin ligand (HCELL), and demonstrated that the engineered exosomes exhibited an enhanced ability for bone marrow homing and selective targeting of LSCs. Additionally, using a humanized AML mouse model, we confirmed that the engineered exosomes, loaded with miR-34c-5p, could selectively promote eradication of LSCs and impede the AML development in vivo. In summary, we successfully designed an effective delivery system and provided new insights into the development of novel therapies for delivering miRNA or other molecules to LSCs with greater cellular targeting specificity.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxi Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingnan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
8
|
Lauriola A, Davalli P, Marverti G, Santi S, Caporali A, D'Arca D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15113009. [PMID: 37296972 DOI: 10.3390/cancers15113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland EH4 2XU, UK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|