1
|
Sargsian A, Koutsoumpou X, Girmatsion H, Egil C, Buttiens K, Luci CR, Soenen SJ, Manshian BB. Silver nanoparticle induced immunogenic cell death can improve immunotherapy. J Nanobiotechnology 2024; 22:691. [PMID: 39523339 PMCID: PMC11552147 DOI: 10.1186/s12951-024-02951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer immunotherapy is often hindered by an immunosuppressive tumor microenvironment (TME). Various strategies are being evaluated to shift the TME from an immunologically 'cold' to 'hot' tumor and hereby improve current immune checkpoint blockades (ICB). One particular hot topic is the use of combination therapies. Here, we set out to screen a variety of metallic nanoparticles and explored their in vitro toxicity against a series of tumor and non-tumor cell lines. For silver nanoparticles, we also explored the effects of core size and surface chemistry on cytotoxicity. Ag-citrate-5 nm nanoparticles were found to induce high cytotoxicity in Renca cells through excessive generation of reactive oxygen species (ROS) and significantly increased cytokine production. The induced toxicity resulted in a shift of the immunogenic cell death (ICD) marker calreticulin to the cell surface in vitro and in vivo. Subcutaneous Renca tumors were treated with anti-PD1 or in combination with Ag-citrate-5 nm. The combination group resulted in significant reduction in tumor size, increased necrosis, and immune cell infiltration at the tumor site. Inhibition of cytotoxic CD8 + T cells confirmed the involvement of these cells in the observed therapeutic effects. Our results suggest that Ag-citrate-5 nm is able to promote immune cell influx and increase tumor responsiveness to ICB therapies.
Collapse
Affiliation(s)
- Ara Sargsian
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hermon Girmatsion
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Can Egil
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kiana Buttiens
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Ren X, Luo X, Wang F, Wan L, Wang X, Xiong J, Ye M, Rui S, Liu Z, Wang S, Zhao Q. Recent advances in copper homeostasis-involved tumor theranostics. Asian J Pharm Sci 2024; 19:100948. [PMID: 39474127 PMCID: PMC11513462 DOI: 10.1016/j.ajps.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 01/05/2025] Open
Abstract
As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu2+/Cu+ is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.
Collapse
Affiliation(s)
- Xinghua Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Luo
- Wuya College of innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fuchang Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaofan Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jinya Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengwei Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiqiao Rui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Liu W, Song X, Jiang Q, Guo W, Liu J, Chu X, Lei Z. Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1064. [PMID: 38998669 PMCID: PMC11243522 DOI: 10.3390/nano14131064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Semiconductor nanomaterials have emerged as a significant factor in the advancement of tumor immunotherapy. This review discusses the potential of transition metal oxide (TMO) nanomaterials in the realm of anti-tumor immune modulation. These binary inorganic semiconductor compounds possess high electron mobility, extended ductility, and strong stability. Apart from being primary thermistor materials, they also serve as potent agents in enhancing the anti-tumor immunity cycle. The diverse metal oxidation states of TMOs result in a range of electronic properties, from metallicity to wide-bandgap insulating behavior. Notably, titanium oxide, manganese oxide, iron oxide, zinc oxide, and copper oxide have garnered interest due to their presence in tumor tissues and potential therapeutic implications. These nanoparticles (NPs) kickstart the tumor immunity cycle by inducing immunogenic cell death (ICD), prompting the release of ICD and tumor-associated antigens (TAAs) and working in conjunction with various therapies to trigger dendritic cell (DC) maturation, T cell response, and infiltration. Furthermore, they can alter the tumor microenvironment (TME) by reprogramming immunosuppressive tumor-associated macrophages into an inflammatory state, thereby impeding tumor growth. This review aims to bring attention to the research community regarding the diversity and significance of TMOs in the tumor immunity cycle, while also underscoring the potential and challenges associated with using TMOs in tumor immunotherapy.
Collapse
Affiliation(s)
- Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
| | - Xueru Song
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Qiong Jiang
- Department of Gastroenterology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China;
| | - Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| |
Collapse
|