1
|
Yang Z, Ling J, Sun W, Pan C, Chen T, Dong C, Zhou X, Zhang J, Zheng J, Ma X. Artificial intelligence-assisted magnetic resonance lymphography for evaluation of micro- and macro-sentinel lymph node metastasis in breast cancer. Mater Today Bio 2025; 32:101692. [PMID: 40225140 PMCID: PMC11986559 DOI: 10.1016/j.mtbio.2025.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Contrast-enhanced magnetic resonance lymphography (CE-MRL) plays a crucial role in preoperative diagnostic for evaluating tumor metastatic sentinel lymph node (T-SLN), by integrating detailed lymphatic information about lymphatic anatomy and drainage function from MR images. However, the clinical gadolinium-based contrast agents for identifying T-SLN is seriously limited, owing to their small molecular structure and rapid diffusion into the bloodstream. Herein, we propose a novel albumin-modified manganese-based nanoprobes enhanced MRL method for accurately assessing micro- and macro-T-SLN. Specifically, the inherent concentration gradient of albumin between blood and interstitial fluid aids in the movement of nanoprobes into the lymphatic system. The micro-T-SLN exhibits a notably higher MR signal due to the formation of new lymphatic vessels and increased lymphatic flow, allowing for a greater influx of nanoprobes. In contrast, the macro-T-SLN shows a lower MR signal as a result of tumor cell proliferation and damage to the lymphatic vessels. Additionally, a highly accurate and sensitive machine learning model has been developed to guide the identification of micro- and macro-T-SLN by analyzing manganese-enhanced MR images. In conclusion, our research presents a novel comprehensive assessment framework utilizing albumin-modified manganese-based nanoprobes for a highly sensitive evaluation of micro- and macro-T-SLN in breast cancer.
Collapse
Affiliation(s)
- Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jianer Ling
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Wei Sun
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Chunshu Pan
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojun Zhou
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315012, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
2
|
Hu A, Tian J, Deng X, Wang Z, Li Y, Wang J, Liu L, Li Q. The diagnosis and management of small and indeterminate lymph nodes in papillary thyroid cancer: preoperatively and intraoperatively. Front Endocrinol (Lausanne) 2024; 15:1484838. [PMID: 39610843 PMCID: PMC11602296 DOI: 10.3389/fendo.2024.1484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Although thyroid cancer is an indolent tumor with a favorable prognosis, lymph node metastasis (LNM) serves as a major concern for many patients. Because LNM is strongly correlated with recurrence, distant metastasis, and shortened survival, a precise and timely diagnosis and following appropriate management for LNM are necessary. However, significant challenges still exist in the diagnosis of small LNs (<1 cm in diameter), and their low volume makes it difficult to determine whether they are metastatic or benign. Therefore, the diagnostic technique for these small and indeterminate LNs (siLNs) has been one of the leading research subjects in recent years. The implementation of innovative technologies, such as contrast-enhanced ultrasonography, frozen section, and molecular detection, has brought great progress to the diagnosis of siLNs. Meanwhile, the strategies for managing siLNs in clinical practice have evolved considerably over the past several years, with several appropriate options recommended by guidelines. In this review, we aim to provide a systematic overview of the latest studies and potential evidence about effective approaches for detecting and evaluating siLNs. Furthermore, the following management modalities of siLNs in different situations are well discussed.
Collapse
Affiliation(s)
- Ang Hu
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahe Tian
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- Department of Urology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyu Wang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianwei Wang
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Longzhong Liu
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuli Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Alvarez-Hornia Pérez E, Carnelli C, Gutierrez PA, González Sánchez R, Mesa Quesada J. Future challenges of contrast media in radiology. RADIOLOGIA 2024; 66 Suppl 2:S132-S141. [PMID: 39603736 DOI: 10.1016/j.rxeng.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/21/2024] [Indexed: 11/29/2024]
Abstract
Contrast media (CM) were first used soon after the discovery of X-rays in 1895. Ever since, continuous technological development and pharmaceutical research has led to tremendous progress in radiology, more available techniques and contrast media, and expanded knowledge around their indications. A greater prevalence of chronic diseases, population ageing, and the rise in diagnosis and survival times among cancer patients have resulted in a growing demand for diagnostic imaging and an increased consumption of CM. This article presents the main lines of research in CM development which seek to minimise toxicity and maximise efficacy, opening up new diagnostic and therapeutic possibilities through new molecules or nanomedicine. The sector, which is continuously evolving, faces challenges such as shortages and the need for more equitable and sustainable practices.
Collapse
Affiliation(s)
| | - C Carnelli
- Unidad Académica de Imagenología Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - P A Gutierrez
- CH Dunkerque, Department of Radiology, Dunkirk, France
| | | | | |
Collapse
|
5
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
6
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Melemenidis S, Knight JC, Kersemans V, Perez-Balderas F, Zarghami N, Soto MS, Cornelissen B, Muschel RJ, Sibson NR. In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. Int J Mol Sci 2024; 25:7160. [PMID: 39000268 PMCID: PMC11241628 DOI: 10.3390/ijms25137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Current clinical diagnostic imaging methods for lung metastases are sensitive only to large tumours (1-2 mm cross-sectional diameter), and early detection can dramatically improve treatment. We have previously demonstrated that an antibody-targeted MRI contrast agent based on microparticles of iron oxide (MPIO; 1 μm diameter) enables the imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Using a mouse model of lung metastasis, upregulation of endothelial VCAM-1 expression was demonstrated in micrometastasis-associated vessels but not in normal lung tissue, and binding of VCAM-MPIO to these vessels was evident histologically. Owing to the lack of proton MRI signals in the lungs, we modified the VCAM-MPIO to include zirconium-89 (89Zr, t1/2 = 78.4 h) in order to allow the in vivo detection of lung metastases by positron emission tomography (PET). Using this new agent (89Zr-DFO-VCAM-MPIO), it was possible to detect the presence of micrometastases within the lung in vivo from ca. 140 μm in diameter. Histological analysis combined with autoradiography confirmed the specific binding of the agent to the VCAM-1 expressing vasculature at the sites of pulmonary micrometastases. By retaining the original VCAM-MPIO as the basis for this new molecular contrast agent, we have created a dual-modality (PET/MRI) agent for the concurrent detection of lung and brain micrometastases.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford School of Medicine, Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - James C. Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Veerle Kersemans
- Clinical Nuclear Medicine Imaging, Siemens Healthineers, 2595 BN The Hague, The Netherlands;
| | | | - Niloufar Zarghami
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Manuel Sarmiento Soto
- Department of Biochemistry and Molecular Biology, University of Seville, 41004 Seville, Spain;
| | - Bart Cornelissen
- Department of Nuclear Medicine, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Ruth J. Muschel
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| | - Nicola R. Sibson
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (N.Z.); (R.J.M.)
| |
Collapse
|
8
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
9
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|