Assessment of the healing process after percutaneous implantation of a cardiovascular device: a systematic review.
Int J Cardiovasc Imaging 2019;
36:385-394. [PMID:
31745743 DOI:
10.1007/s10554-019-01734-2]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/10/2019] [Indexed: 01/16/2023]
Abstract
The healing process, occurring after intra-cardiac and intra-vascular device implantation, starts with fibrin condensation and attraction of inflammatory cells, followed by the formation of fibrous tissue that slowly covers the device. The duration of this process is variable and may be incomplete, which can lead to thrombus formation, dislodgement of the device or stenosis. To better understand this process and the neotissue formation, animal models were developed: small (rats and rabbits) and large (sheep, pigs, dogs and baboons) animal models for intra-vascular device implantation; sheep and pigs for intra-cardiac device implantation. After intra-vascular and intra-cardiac device implantation in these animal models, in vitro techniques, i.e. histology, which is the gold standard and scanning electron microscopy, were used to assess the device coverage, characterize the cell constitution and detect complications such as thrombosis. In humans, optical coherence tomography and intra-vascular ultrasounds are both invasive modalities used after stent implantation to assess the structure of the vessels, atheroma plaque and complications. Non-invasive techniques (computed tomography and magnetic resonance imaging) are in development in humans and animal models for tissue characterization (fibrosis), device remodeling evaluation and device implantation complications (thrombosis and stenosis). This review aims to (1) present the experimental models used to study this process on cardiac devices; (2) focus on the in vitro techniques and invasive modalities used currently in humans for intra-vascular and intra-cardiac devices and (3) assess the future developments of non-invasive techniques in animal models and humans for intra-cardiac devices.
Collapse