1
|
Wu D, Gong T, Sun Z, Yao X, Wang D, Chen Q, Guo Q, Li X, Guo Y, Lu Y. Dual-crosslinking gelatin-hyaluronic acid methacrylate based biomimetic PDAC desmoplastic niche enhances tumor-associated macrophages recruitment and M2-like polarization. Int J Biol Macromol 2024; 269:131826. [PMID: 38679256 DOI: 10.1016/j.ijbiomac.2024.131826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.
Collapse
Affiliation(s)
- Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Zhongxiang Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
2
|
Ali SMA, Adnan Y, Ali SM, Ahmad Z, Chawla T, Farooqui HA. Immunohistochemical analysis of a panel of cancer stem cell markers and potential therapeutic markers in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:2279-2292. [PMID: 36066622 DOI: 10.1007/s00432-022-04315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Pancreatic Ductal Adenocarcinoma (PDAC) is the most common type of pancreatic malignancies. It is known for its aggressive nature and high mortality rate. This calls for an urgent need of new prognostic and therapeutic markers that can be targeted for personalized treatment of the patient. METHODS Among 142 patients diagnosed with pancreatic cancers at Aga Khan University Hospital, a total of 62 patients were selected based on their confirmed diagnosis of PDAC. Immunohistochemistry was performed on Formalin-Fixed Paraffin-Embedded (FFPE) sections using selected antibodies (CD44, CD133, L1CAM, HER2, PD-L1, EGFR, COX2 and cyclin D1). All the slides were scored independently by two pathologists as per the set criteria. RESULTS Expression of all cancer stem cell markers was found to be significantly associated with one or more potential therapeutic markers. CD44 expression was significantly associated with HER2 (p = 0.032), COX2 (p = 0.005) and EGFR expression (p = 0.008). CD133 expression also showed significant association with HER2 (p = 0.036), COX2 (p = 0.004) and EGFR expression (p = 0.018). L1CAM expression was found to be associated with expression of COX2 (p = 0.017). None of the proteins markers showed association with overall survival of the patient. On the other hand, among the clinicopathological characteristics, histological differentiation (p = 0.047), lymphovascular invasion (p = 0.021) and perineural invasion (p = 0.014) were found to be significantly associated with patient's overall survival. CONCLUSION Internationally, this is the first report that assesses the selected panel of cancer stem cell markers and potential therapeutic targets in a single study and evaluates its combined expression. The study clearly demonstrates association between expression of cancer stem cell markers and therapeutic targets hence paves a way for precision medicine for pancreatic cancer patients.
Collapse
Affiliation(s)
- S M Adnan Ali
- Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan.
| | - Yumna Adnan
- Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Saleema Mehboob Ali
- Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Zubair Ahmad
- Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Tabish Chawla
- Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | | |
Collapse
|
3
|
Paltusheva ZU, Ashikbayeva Z, Tosi D, Gritsenko LV. Highly Sensitive Zinc Oxide Fiber-Optic Biosensor for the Detection of CD44 Protein. BIOSENSORS 2022; 12:1015. [PMID: 36421133 PMCID: PMC9688241 DOI: 10.3390/bios12111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Currently, significant progress is being made in the prevention, treatment and prognosis of many types of cancer, using biological markers to assess current physiological processes in the body, including risk assessment, differential diagnosis, screening, treatment determination and monitoring of disease progression. The interaction of protein coding gene CD44 with the corresponding ligands promotes the processes of invasion and migration in metastases. The study of new and rapid methods for the quantitative determination of the CD44 protein is essential for timely diagnosis and therapy. Current methods for detecting this protein use labeled assay reagents and are time consuming. In this paper, a fiber-optic biosensor with a spherical tip coated with a thin layer of zinc oxide (ZnO) with a thickness of 100 nm, deposited using a low-cost sol-gel method, is developed to measure the CD44 protein in the range from 100 aM to 100 nM. This sensor is easy to manufacture, has a good response to the protein change with detection limit of 0.8 fM, and has high sensitivity to the changes in the refractive index (RI) of the environment. In addition, this work demonstrates the possibility of achieving sensor regeneration without damage to the functionalized surface. The sensitivity of the obtained sensor was tested in relation to the concentration of the control protein, as well as without antibodies-CD44.
Collapse
Affiliation(s)
- Zhaniya U. Paltusheva
- Department of General Physics, Satbayev University, Satpayev Str., 22, Almaty 050013, Kazakhstan
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| | - Lesya V. Gritsenko
- Department of General Physics, Satbayev University, Satpayev Str., 22, Almaty 050013, Kazakhstan
| |
Collapse
|
4
|
Mahinfar P, Mokhtarzadeh A, Baradaran B, Siasi Torbati E. Antiproliferative activity of CD44 siRNA-PEI-PEG nanoparticles in glioblastoma: involvement of AKT signaling. Res Pharm Sci 2021; 17:78-85. [PMID: 34909046 PMCID: PMC8621842 DOI: 10.4103/1735-5362.329928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background and purpose Glioblastoma multiforme (GBM) is the most invasive type of cancer which starts inside the brain. GBM cells were found to have similar properties to glioblastoma cancer stem cells. CD44 can be used as a marker of the cancer stem cells in a subset of glioblastoma tumor cells. Recent studies showed that CD44 is involved in developing cancer cells via the protein kinase B (PKB or AKT) signaling pathway. Therefore, this study aimed to investigate the CD44 mRNA silencing effects on the glioblastoma cell cycle via AKT signaling pathway. Experimental approach To determine CD44 expression in the samples of the patients with GBM, we used the analysis of data extracted from TCGA database. qRT-PCR and western blotting were used to evaluate the expression level of genes and proteins. Different cell cycles were evaluated by DAPI staining and flow cytometry. Findings/Results Bioinformatics results showed that CD44 expression level in GBM tumor samples is higher than in normal samples. Effects of poly (ethylene imine)-polyethylene glycol (PEI-PEG)-loaded CD44 siRNA in cell cycle showed that CD44 silencing could inhibit cell cycle in G0-G1 phase by more than 20% compared to the negative control (P < 0.05). Furthermore, PEI-PEG-loaded CD44 siRNA reduces the expression of cyclin D1 and CKD-4. According to our findings, this structure also prevented AKT phosphorylation at Thr-308 and Ser-473. Conclusion and implications Our results suggest that PEI-PEG-loaded CD44 siRNA may attenuate the cell cycle by suppressing AKT signaling pathway.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Elham Siasi Torbati
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, I.R. Iran
| |
Collapse
|
5
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
6
|
Che N, Zhao X, Zhao N, Zhang Y, Ni C, Zhang D, Su S, Liang X, Li F, Li Y. The role of different PI3K protein subtypes in the metastasis, angiogenesis and clinical prognosis of hepatocellular carcinoma. Ann Diagn Pathol 2021; 53:151755. [PMID: 34023498 DOI: 10.1016/j.anndiagpath.2021.151755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Abnormal activation of the PI3K/AKT pathway is closely related to tumor occurrence, development and angiogenesis. PI3K, as a key protein in the PI3K/Akt pathway, has different subtypes that play diverse roles in various tumors. The aim of this study was to examine the roles of different PI3K protein subtypes (PI3Kp110α, PI3Kp110β, and PI3Kp110δ) in the metastasis, angiogenesis and prognosis of hepatocellular carcinoma (HCC). METHODS The roles of different PI3K protein subtypes in the metastasis, angiogenesis and prognosis of HCC were assessed by immunohistochemical staining of 97 HCC tissues and the STRING database. RESULTS Our results showed that PI3Kp110α and PI3Kp110δ were associated with HCC metastasis and angiogenesis. Patients with high expression of PI3Kp110α and PI3Kp110δ had a worse prognosis and shorter survival time, respectively, than those with low expression, whereas these effects were not observed for PI3Kp110β. Cox regression analysis showed that PI3Kp110α and clinical stage were independent risk factors for the overall survival of HCC patients. CONCLUSIONS PI3Kp110α and PI3Kp110δ promoted HCC metastasis and angiogenesis via the PI3K/AKT pathway, and PI3Kp110α was an independent risk factor for HCC patients. These findings provide valuable insights for the prognosis evaluation and the selection of subtype inhibitors of HCC patients.
Collapse
Affiliation(s)
- Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Hospital, Tianjin 300060, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
7
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
8
|
Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, Wang K, Zong S. The Prognostic and Clinical Value of CD44 in Colorectal Cancer: A Meta-Analysis. Front Oncol 2019; 9:309. [PMID: 31114754 PMCID: PMC6503057 DOI: 10.3389/fonc.2019.00309] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background: CD44 is widely used as a putative cancer stem cells (CSCs) marker for colorectal cancer (CRC). However, the prognostic role of CD44 in CRC remains controversial. Methods: We performed a systematic review and meta-analysis to evaluate the association of various CD44 isoforms and overall survival (OS) and clinicopathological features of CRC patients. Results: A total of 48 studies were included in the meta-analysis. Total CD44 isoforms overexpression was significantly correlated with worse OS of patients with CRC (HR = 1.32, 95% CI = 1.08-1.61, P = 0.007). In a stratified analysis, a higher level of either CD44v6 or CD44v2 had an unfavorable impact on OS (HRCD44v6 = 1.50, 95% CI = 1.10-2.14, P = 0.010; HRCD44v2 = 2.93, 95% CI = 1.49-5.77, P = 0.002). Additionally, CD44 was shown to be associated with some clinicopathological features, such as lymph node metastasis (ORCD44 = 1.56, 95% CI = 1.01-2.41, P = 0.044; ORCD44v6 = 1.97, 95% CI = 1.19-3.26, P = 0.008; ORTotal CD44 isoforms = 1.57, 95% CI = 1.15-2.14, P = 0.004), distant metastasis (ORCD44 = 2.90, 95% CI = 1.08-7.83, P = 0.035; ORTotal CD44 isoforms = 1.89, 95% CI = 1.02-3.53, P = 0.044). Moreover, a high level of CD44 showed a possible correlation with poor differentiation (ORTotal CD44 isoforms = 1.44, 95% CI = 1.00-2.08, P = 0.051), elevated level of CD44v6 tend to be correlated with tumor size (OR = 1.71, 95% CI = 0.99-2.96, P = 0.056). Conclusions: This meta-analysis demonstrated that CD44 overexpression might be an unfavorable prognostic factor for CRC patients and could be used to predict poor differentiation, lymph node metastasis and distant metastasis.
Collapse
Affiliation(s)
- Zhenpeng Wang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Xie
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiping Huang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunchun Xue
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Gu
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaiqiang Wang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Franklin O, Billing O, Öhlund D, Berglund A, Herdenberg C, Wang W, Hellman U, Sund M. Novel prognostic markers within the CD44-stromal ligand network in pancreatic cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 5:130-141. [PMID: 30456933 PMCID: PMC6463864 DOI: 10.1002/cjp2.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
The dense stroma in pancreatic cancer tumours is rich in secreted extracellular matrix proteins and proteoglycans. Secreted hyaluronan, osteopontin and type IV collagen sustain oncogenic signalling by interactions with CD44s and its variant isoform CD44v6 on cancer cell membranes. Although well established in animal and in vitro models, this oncogenic CD44-stromal ligand network is less explored in human cancer. Here, we use a pancreatic cancer tissue microarray from 69 primary tumours and 37 metastatic lymph nodes and demonstrate that high tumour cell expression of CD44s and, surprisingly, low stromal deposition of osteopontin correlate with poor survival independent of established prognostic factors for pancreatic cancer. High stromal expression of hyaluronan was a universal trait of both primary tumours and metastatic lymph nodes. However, hyaluronan species of different molecular mass are known to function differently in pancreatic cancer biology and immunohistochemistry cannot distinguish between them. Using gas-phase electrophoretic molecular mobility analysis, we uncover a shift towards high molecular mass hyaluronan in pancreatic cancer tissue compared to normal pancreas and at a transcriptional level, we find that hyaluronan synthesising HAS2 correlates positively with CD44. The resulting prediction that high molecular mass hyaluronan would then correlate with poor survival in pancreatic cancer was confirmed in serum samples, where we demonstrate that hyaluronan >27 kDa measured before surgery is an independent predictor of postoperative survival. Our findings confirm the prognostic value of CD44 tissue expression and highlight osteopontin tissue expression and serum high molecular mass hyaluronan as novel prognostic markers in pancreatic cancer.
Collapse
Affiliation(s)
- Oskar Franklin
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Ola Billing
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anette Berglund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Carl Herdenberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Wanzhong Wang
- Department of Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, Dantes Z, Valenti G, White RA, Middelhoff MA, Ilmer M, Oberstein PE, Angele MK, Deng H, Hayakawa Y, Westphalen CB, Werner J, Remotti H, Reichert M, Tailor YH, Nagar K, Friedman RA, Iuga AC, Olive KP, Wang TC. Cholinergic Signaling via Muscarinic Receptors Directly and Indirectly Suppresses Pancreatic Tumorigenesis and Cancer Stemness. Cancer Discov 2018; 8:1458-1473. [PMID: 30185628 PMCID: PMC6214763 DOI: 10.1158/2159-8290.cd-18-0046] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/15/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
In many solid tumors, parasympathetic input is provided by the vagus nerve, which has been shown to modulate tumor growth. However, whether cholinergic signaling directly regulates progression of pancreatic ductal adenocarcinoma (PDAC) has not been defined. Here, we found that subdiaphragmatic vagotomy in LSL-Kras +/G12D;Pdx1-Cre (KC) mice accelerated PDAC development, whereas treatment with the systemic muscarinic agonist bethanechol restored the normal KC phenotype, thereby suppressing the accelerated tumorigenesis caused by vagotomy. In LSL-Kras +/G12D;LSL-Trp53 +/R172H;Pdx1-Cre mice with established PDAC, bethanechol significantly extended survival. These effects were mediated in part through CHRM1, which inhibited downstream MAPK/EGFR and PI3K/AKT pathways in PDAC cells. Enhanced cholinergic signaling led to a suppression of the cancer stem cell (CSC) compartment, CD11b+ myeloid cells, TNFα levels, and metastatic growth in the liver. Therefore, these data suggest that cholinergic signaling directly and indirectly suppresses growth of PDAC cells, and therapies that stimulate muscarinic receptors may be useful in the treatment of PDAC.Significance: Subdiaphragmatic vagotomy or Chrm1 knockout accelerates pancreatic tumorigenesis, in part via expansion of the CSC compartment. Systemic administration of a muscarinic agonist suppresses tumorigenesis through MAPK and PI3K/AKT signaling, in early stages of tumor growth and in more advanced, metastatic disease. Therefore, CHRM1 may represent a potentially attractive therapeutic target. Cancer Discov; 8(11); 1458-73. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/prevention & control
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cholinergic Agents/pharmacology
- Genes, ras
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/prevention & control
- Receptor, Muscarinic M1/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Takayuki Tanaka
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Marina Macchini
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zahra Dantes
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Ruth A White
- Division of Oncology, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Moritz A Middelhoff
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul E Oberstein
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Huan Deng
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pathology, and Molecular Medicine and Genetics Center, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - C Benedikt Westphalen
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Internal Medicine III, Hospital of the University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Maximilian Reichert
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Yagnesh H Tailor
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Karan Nagar
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Richard A Friedman
- Biomedical Informatics Shared Resource of the Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Alina C Iuga
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Kenneth P Olive
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
11
|
Serri C, Quagliariello V, Iaffaioli RV, Fusco S, Botti G, Mayol L, Biondi M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J Cell Physiol 2018; 234:4959-4969. [DOI: 10.1002/jcp.27297] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Carla Serri
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
| | - Vincenzo Quagliariello
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Rosario Vincenzo Iaffaioli
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Sabato Fusco
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Laura Mayol
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Marco Biondi
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| |
Collapse
|
12
|
Liu Y, Wu T, Lu D, Zhen J, Zhang L. CD44 overexpression related to lymph node metastasis and poor prognosis of pancreatic cancer. Int J Biol Markers 2018; 33:308-313. [PMID: 29683068 DOI: 10.1177/1724600817746951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND CD44 has recently been reported as a biomarker for pancreatic cancer. However, the predictive value of CD44 in pancreatic cancer remains controversial. Therefore, we performed this meta-analysis to evaluate the association between the expression of CD44 and clinicopathological features, and the outcome of pancreatic cancer patients. MATERIALS AND METHOD A comprehensive literature search was performed using PubMed, Embase, and Chinese National Knowledge Infrastructure. The statistical analysis was conducted using Stata software. RESULTS A total of nine studies including 583 cases were included in this meta-analysis. The meta-analysis indicated that CD44 overexpression was associated with poor five-year overall survival rate (OR 0.52; 95% CI 0.30, 0.91; P = 0.02), more lymph node invasion (OR 3.14 (positive vs. negative); 95% CI 1.47, 6.73; P = 0.003), more advanced T stage (OR 2.4 (T3,4 vs. T1,2); 95% CI 1.28, 4.52; P = 0.007), and more advanced TNM stage (OR 4.53 (III~IV vs. I~II); 95% CI 1.46, 14.08; P = 0.01). However, CD44 overexpression was not associated with other clinicopathological features, such as tumor size, differentiation, and distance metastasis. CONCLUSIONS The current evidence suggests that CD44 is an efficient prognostic factor in pancreatic cancer.
Collapse
Affiliation(s)
- Yijuan Liu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ting Wu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Lu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiantao Zhen
- 2 Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- 2 Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Li X, Wang S, Yang S, Ying J, Yu H, Yang C, Liu Y, Wang Y, Cheng S, Xiao J, Guo H, Jiang Z, Wang Z. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1. Oncol Lett 2018; 15:7097-7103. [PMID: 29731875 PMCID: PMC5920822 DOI: 10.3892/ol.2018.8226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/19/2018] [Indexed: 12/29/2022] Open
Abstract
The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput (Clock) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock, acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.
Collapse
Affiliation(s)
- Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Siyang Wang
- Department of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junjie Ying
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hang Yu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chunlei Yang
- Department of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Tsubouchi K, Minami K, Hayashi N, Yokoyama Y, Mori S, Yamamoto H, Koizumi M. The CD44 standard isoform contributes to radioresistance of pancreatic cancer cells. JOURNAL OF RADIATION RESEARCH 2017; 58:816-826. [PMID: 29106581 PMCID: PMC5710530 DOI: 10.1093/jrr/rrx033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 05/08/2023]
Abstract
Resistance to chemoradiotherapy is one reason for the increased recurrence rate of pancreatic cancer after these therapies. These cells change the expression levels of several proteins, such as epithelial-mesenchymal transition (EMT), while acquiring the chemo- or radio-resistance. In this study, we focused on CD44, a pancreatic cancer stem cell marker. CD44 has isoforms with different functions: standard isoform (CD44s) and several variant isoforms (CD44v). However, little is known about the roles of these isoforms after ionizing irradiation. The purpose of this study was to investigate the role of CD44 isoforms in radioresistance of pancreatic cancer cells. AsPC-1 (a human pancreatic cancer cell line) was irradiated with 4 MV X-rays. The mRNA and protein levels of CD44s were strongly upregulated, dose dependently, compared with CD44v after irradiation. Thus, we further investigated CD44s at the point of cell proliferation. We evaluated cell proliferation and survival, using CD44s knockdown cells. CD44s knockdown did not change the proliferation rate for up to 72 h after the irradiation, but decreased cell viability in the colony formation assay. As one of the reasons for these effects, we found downregulation of phosphorylated extracellular signal-regulated kinase (Erk; which is involved with cell proliferation) by CD44s knockdown, time dependently. Moreover, radiation-induced EMT-like expression changes were detected and suppressed by CD44s knockdown. In conclusion, our work demonstrated that CD44 standard isoform was especially upregulated after high-dose X-ray irradiation in several isoforms of CD44 and contributed to longer-term cell survival after the irradiation through the maintenance of Erk phosphorylation and radiation-induced EMT.
Collapse
Affiliation(s)
- Kento Tsubouchi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel. and Fax: +81-6-6879-2579;
| | - Naoki Hayashi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871,Japan
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nanko-kita, Suminoe, Osaka 559-8611, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871,Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Prognostic Evaluation of Vimentin Expression in Correlation with Ki67 and CD44 in Surgically Resected Pancreatic Ductal Adenocarcinoma. Gastroenterol Res Pract 2017; 2017:9207616. [PMID: 28421110 PMCID: PMC5381201 DOI: 10.1155/2017/9207616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose. Radical surgical resection with adjuvant chemotherapy or chemo-radiotherapy is the most effective treatment for pancreatic ductal adenocarcinoma (PDAC). However, relatively few studies investigate the prognostic significance of biological markers in PDAC. This study aims to look into the expressions of vimentin, Ki67, and CD44 in PDAC surgical specimens and their potential prognostic implications in survival. Method. The study was designed as retrospective, and vimentin, Ki67, and CD44 expressions were evaluated by immunohistochemistry in 53 pancreatic ductal adenocarcinoma cases. Overall survival was assessed by the Kaplan–Meier method. Results. Patients' median age was 68 years. The median survival was 18 months. The tumors were T3-4 in 40/53 (75.5%), and metastases in lymph nodes were found in 42 out of 53 (79.2%) cases. On multivariate analysis, the size of primary tumor (p < 0.001), the surgical resection margin status (p = 0.042), and vimentin expression (p = 0.011) were independently correlated with overall survival. Conclusions. Long-term survival after resection of PDAC is still about 15%. Vimentin expression is a potential independent adverse prognostic molecular marker and should be included in histopathological reports. Also, CD44 expression correlates with high Ki67, vimentin positivity, and N stage and may represent a potential target of novel therapeutic modalities in pancreatic adenocarcinoma patients.
Collapse
|
16
|
Zhuang JY, Chen ZY, Zhang T, Tang DP, Jiang XY, Zhuang ZH. Effects of Different Ratio of n-6/n-3 Polyunsaturated Fatty Acids on the PI3K/Akt Pathway in Rats with Reflux Esophagitis. Med Sci Monit 2017; 23:542-547. [PMID: 28134235 PMCID: PMC5295176 DOI: 10.12659/msm.898131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background We designed this study to investigate the influence of different ratios of n-6/n-3 polyunsaturated fatty acid in the diet of reflux esophagitis (RE) rats’ and the effect on the PI3K/Akt pathway. Material/Methods RE rats were randomly divided into a sham group and modeling groups of different concentrations of n-6/n-3 polyunsaturated fatty acid (PUFA): 12:1 group, 10:1 group, 5:1 group, and 1:1 group. RT-PCR and Western-blot were used to detect the expression of PI3K, Akt, p-Akt, NF-κBp50, and NF-κBp65 proteins in esophageal tissue. Results In the n-6/n-3 PUFAs groups the expression of PI3K, Akt, p-Akt, nf-kbp50, and NF-κBp65 mRNA decreased with the decrease in n-6/n-3 ratios in the diet. The lowest expression of each indicator occurred in the 1:1 n-6/n-3 group compared with other n-6/n-3 groups, the difference was statistically significant (p<0.05). Conclusions The inhibition of n-3 PUFAs in the development of esophageal inflammation in rats with RE was attributed to the function of PI3K/Akt-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia-Yuan Zhuang
- The School of Nursing, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Zhi-Yao Chen
- The Second Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Tao Zhang
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China (mainland)
| | - Du-Peng Tang
- People's Hospital of Fujian Province, Fuzhou, Fujian, China (mainland)
| | - Xiao-Yin Jiang
- The School of Nursing, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ze-Hao Zhuang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|