1
|
He G, Liu X. Hypoxia-Inducible Factor-1α (HIF-1α) as a Factor to Predict the Prognosis of Spinal Chordoma. Spine (Phila Pa 1976) 2024; 49:661-669. [PMID: 38251727 DOI: 10.1097/brs.0000000000004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE In this study, the authors explore the potential relationship between hypoxia inducible factor-1α (HIF-1α) and the prognosis of patients with spinal chordoma. SUMMARY OF BACKGROUND DATA Currently, prognostic factors related to the clinical course in the setting of spinal chordoma are poorly understood. Although the close relationship between HIF-1α and tumor angiogenesis, metastasis, and recurrence have been widely reported, it has not been investigated in the context of spinal chordoma. MATERIALS AND METHODS In this study, 32 samples of chordoma patients were compared with 14 nucleus pulposus tissues as controls. The specific expression of HIF-1α was detected by immunohistochemistry. Continuous disease-free survival (CDFS) was defined as the interval from tumor resection to confirmation of the first local recurrence or distant metastasis. Overall survival (OS) was defined as the interval from the date of surgery to death related to any cause. The relationship between HIF-1α expression and the clinicopathologic characteristics of patients with chordoma was analyzed using the Pearson χ 2 test. Multivariate Cox analysis was used to evaluate whether HIF-1α expression was associated with the prognosis of patients after controlling for confounders. RESULTS HIF-1α was mainly expressed in the cytoplasm or nucleus in all of the chordoma samples, which showed significantly higher than that in the normal nucleus pulposus tissue ( P =0.004). Multivariate Cox regression analyses showed that high HIF-1α expression and location of HIF-1α expression were significantly associated with poor CDFS (hazard ratio (HR)=3.374; P =0.021) and OS (HR=4.511; P =0.012). In addition, we further found that high HIF-1α expression both in the cytoplasm and nucleus indicated a stronger prognostic factor for poor CDFS (HR=3.885; P =0.011) and OS (HR=4.014; P =0.011) in spinal chordoma patients. CONCLUSION High HIF-1α expression may become a potential new biological indicator to predict a poor prognosis in patients with spinal chordoma. HIF-1α may also represent a novel therapeutic target for the treatment of spinal chordoma.
Collapse
Affiliation(s)
- Guanping He
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Pang H, Lei D, Guo Y, Yu Y, Liu T, Liu Y, Chen T, Fan C. Three categories of similarities between the placenta and cancer that can aid cancer treatment: Cells, the microenvironment, and metabolites. Front Oncol 2022; 12:977618. [PMID: 36059660 PMCID: PMC9434275 DOI: 10.3389/fonc.2022.977618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most harmful diseases, while pregnancy is a common condition of females. Placenta is the most important organ for fetal growth, which has not been fully understand. It's well known that placenta and solid tumor have some similar biological behaviors. What's more, decidua, the microenvironment of placenta, and metabolism all undergo adaptive shift for healthy pregnancy. Interestingly, decidua and the tumor microenvironment (TME); metabolism changes during pregnancy and cancer cachexia all have underlying links. However, whether the close link between pregnancy and cancer can bring some new ideas to treat cancer is still unclear. So, in this review we note that pregnancy may offer clues to treat cancer related to three categories: from cell perspective, through the shared development process of the placenta and cancer; from microenvironment perspective, though the shared features of the decidua and TME; and from metabolism perspective, through shared metabolites changes during pregnancy and cancer cachexia. Firstly, comparing gene mutations of both placenta and cancer, which is the underlying mechanism of many similar biological behaviors, helps us understand the origin of cancer and find the key factors to restore tumorigenesis. Secondly, exploring how decidua affect placenta development and similarities of decidua and TME is helpful to reshape TME, then to inhibit cancer. Thirdly, we also illustrate the possibility that the altered metabolites during pregnancy may reverse cancer cachexia. So, some key molecules changed in circulation of pregnancy may help relieve cachexia and make survival with cancer realized.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Yu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
AKIN DF, ILIKCI R. Mutations and expression profile of EDIL3 and correlation with HIF1A and tumor-associated carbonic anhydrases in pancreatic cancer. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.756701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
5
|
A novel combination of percutaneous stenting with iodine-125 seed implantation and chemotherapy for the treatment of pancreatic head cancer with obstructive jaundice. Brachytherapy 2020; 20:218-225. [PMID: 33158777 DOI: 10.1016/j.brachy.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Insertion of radioactive strips through the biliary stent has been reported to offer longer survival and patency than an uncovered conventional self-expanding metal stent in patients with unresectable malignant biliary obstruction. The aim of this study was to investigate the safety and effectiveness of intraluminal brachytherapy combined with 125I seed implantation and transarterial infusion chemotherapy for the treatment of pancreatic head cancer with obstructive jaundice. METHOD From October 2012 to January 2018, 21 consecutive patients diagnosed with biliary obstruction caused by locally advanced, nonmetastatic pancreatic cancer with cytologically or histologically confirmed by biopsy were enrolled and receive treatment with intraluminal brachytherapy using 125I seed strand and CT-guided percutaneous radioactive seed implantation therapy. The procedure-related and radiation complications were assessed. The outcomes were measured in terms of stent patency, patient survival, complications related to the procedure. RESULT One of the 22 patients (4.5%, 1/22) with pancreatic head cancer failed to perform the above procedure because the guidewire was unable to pass through the obstruction segment. The remaining 21 patients (95.5%, 21/22) with pancreatic head cancer with obstructive jaundice were successfully placed with biliary stents and radioactive strips through drainage tubes. The median number of 125I seeds loaded was 15, ranging from 12 to 17. After the chemotherapy with gemcitabine and cisplatin, no adverse reaction of Grade Ⅲ ∼ Ⅳ occurred in all cases. Median stent patency was 12.50 months (95% CI: 10.26, 14.74). By May 2019, all 21 patients had died, with overall survival of 5.2-23.3 months, with a median survival of 13.20 months (95% CI: 10.96, 15.44). CONCLUSION Percutaneous 125I seed implantation combined with insertion of radioactive strips through the biliary stent has the characteristics of less trauma, fewer complications, simple operation, and so on. These procedures bring remission of obstructive jaundice combined with the increased survival for the treatment of obstructive jaundice caused by unresectable pancreatic head cancer if follow-up chemotherapy is carried out. The long-term efficacy of this treatment combination needs to be confirmed by further multicenter, large sample size prospective randomized controlled studies.
Collapse
|
6
|
Tiwari A, Tashiro K, Dixit A, Soni A, Vogel K, Hall B, Shafqat I, Slaughter J, Param N, Le A, Saunders E, Paithane U, Garcia G, Campos AR, Zettervall J, Carlson M, Starr TK, Marahrens Y, Deshpande AJ, Commisso C, Provenzano PP, Bagchi A. Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis. Gastroenterology 2020; 159:1882-1897.e5. [PMID: 32768595 PMCID: PMC7680408 DOI: 10.1053/j.gastro.2020.07.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Kojiro Tashiro
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,These authors contributed equally
| | - Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN,These authors contributed equally
| | - Aditi Soni
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Keianna Vogel
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bryan Hall
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Iram Shafqat
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | - Nesteen Param
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - An Le
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Emily Saunders
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Utkarsha Paithane
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Guillermina Garcia
- Histology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | - Jon Zettervall
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Marjorie Carlson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Timothy K. Starr
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN
| | - York Marahrens
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Cosimo Commisso
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
7
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
8
|
Liang HW, Luo B, Du LH, He RQ, Chen G, Peng ZG, Ma J. Expression significance and potential mechanism of hypoxia-inducible factor 1 alpha in patients with myelodysplastic syndromes. Cancer Med 2019; 8:6021-6035. [PMID: 31411003 PMCID: PMC6792495 DOI: 10.1002/cam4.2447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the expression level and potential mechanism of hypoxia‐inducible factor 1 alpha (HIF‐1α) in patients with myelodysplastic syndromes (MDS). Methods Immunohistochemistry (IHC) techniques were used to examine the protein expression of HIF‐1α in paraffin‐embedded myeloid tissues from 82 patients with MDS and 33 controls (patients with lymphoma that is not invading myeloid tissues). In addition, the associations between the protein expression of HIF‐1α and clinical parameters were examined. To further investigate the significance of HIF‐1α expression in MDS patients, the researchers not only extracted the data about HIF‐1α expression from MDS‐related microarrays but also analyzed the correlation between the level of HIF‐1α expression and MDS. The microRNA (miRNA) targeting HIF‐1α was predicted and verified with a dual luciferase experiment. Results Immunohistochemistry revealed that the positive expression rate of HIF‐1α in the bone marrow of patients with MDS was 90.24%. This rate was remarkably higher than that of the controls (72.73%) and was statistically significant (P < .05), which indicated that HIF‐1α was upregulated in the myeloid tissues of MDS patients. For the GSE2779, GSE18366, GSE41130, and GSE61853 microarrays, the average expression of HIF‐1α in MDS patients was higher than in the controls. Particularly for the GSE18366 microarray, HIF‐1α expression was considerably higher in MDS patients than in the controls (P < .05). It was predicted that miR‐93‐5p had a site for binding with HIF‐1α, and a dual luciferase experiment confirmed that miR‐93‐5p could bind with HIF‐1α. Conclusion The upregulated expression of HIF‐1α was examined in the myeloid tissues of MDS patients. The presence of HIF‐1α (+) suggested an unsatisfactory prognosis for patients, which could assist in the diagnosis of MDS. In addition, miR‐93‐5p could bind to HIF‐1α by targeting, showing its potential to be the target of HIF‐1α in MDS.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Li-Hua Du
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Gang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|