1
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
2
|
Wang S, Zhang X, Lei H, Song L, Huang Y, Kang T, Zhang M, Wang N, Yang P, Feng S, Wang J, Bai R, Wang N, Wang W, Zheng Y. Proline-rich 11 (PRR11) promotes the progression of cutaneous squamous cell carcinoma by activating the EGFR signaling pathway. Mol Carcinog 2023; 62:613-627. [PMID: 36727626 DOI: 10.1002/mc.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignancies, and its incidence rate is increasing worldwide. Proline-rich 11 (PRR11) has been reported to be involved in the occurrence and development of various tumors. However, the role of PRR11 in cSCC remains unknown. In the present study, we observed upregulated expression of PRR11 in cSCC tissues and cell lines. Knockdown of PRR11 in the cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing cell cycle arrest during the G1/S phase transition, promoted cell apoptosis, and reduced cell migration and invasion in vitro. Conversely, overexpression of PRR11 promoted cell proliferation, decreased cell apoptosis, and enhanced cell migration and invasion. PRR11 knockdown also inhibited cSCC tumor growth in a mouse xenograft model. Mechanistic investigations by RNA sequencing revealed that 891 genes were differentially expressed genes between cells with PRR11 knockdown and control cells. Enrichment analysis of different genes showed that the epidermal growth factor receptor (EGFR) signaling pathway was the top enriched pathway. We further validated that PRR11 induced EGFR pathway activity, which contributed to cSCC progression. These data suggest that PRR11 may serve as a novel therapeutic target in cSCC.
Collapse
Affiliation(s)
- Shengbang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiu Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liumei Song
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjian Huang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Kang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengju Yang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingping Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Han W, Chen L. PRR11 in Malignancies: Biological Activities and Targeted Therapies. Biomolecules 2022; 12:biom12121800. [PMID: 36551227 PMCID: PMC9775115 DOI: 10.3390/biom12121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Proline rich 11 (PRR11), initially renowned for its relevance with cell-cycle progression, is a proline-rich protein coding gene in chromosome 17q22-23. Currently, accumulating studies have demonstrated that PRR11 plays a critical role in cellular proliferation, colony formation, migration, invasion, cell-cycle progression, apoptosis, autophagy and chemotherapy resistance via multiple signaling pathways and biological molecules in several solid tumors. In particular, PRR11 also serves as a promising prognostic indicator in a limited number of human cancers, gradually manifesting its potential application for targeted therapies. In this review, we summarize functional activities, related signaling pathways and biological molecules of PRR11 in various malignancies and generalize potential application of PRR11 for targeted therapies, thereby contributing to further exploration of PRR11 in cancer treatment.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (W.H.); (L.C.)
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Correspondence: (W.H.); (L.C.)
| |
Collapse
|
4
|
Xu C, Minaguchi T, Qi N, Fujieda K, Suto A, Itagaki H, Shikama A, Tasaka N, Akiyama A, Nakao S, Ochi H, Satoh T. Differential roles of the Wip1-p38-p53 DNA damage response pathway in early/advanced-stage ovarian clear cell carcinomas. World J Surg Oncol 2022; 20:139. [PMID: 35490254 PMCID: PMC9055709 DOI: 10.1186/s12957-022-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian clear cell carcinoma (OCCC) is one of the most lethal types of ovarian cancer. Early-stage OCCC can be cured by surgery; however, advanced-stage disease shows poor prognosis due to chemoresistance unlike the more common high-grade serous carcinoma. Methods We explored the differential roles of the Wip1–p38–p53 DNA damage response pathway in respective early- or advanced-stage OCCC by immunohistochemistry of Wip1, phospho-p38, p53, and phospho-p53 from consecutive 143 patients. Results High Wip1 expression correlated with positive p53 (p=0.011), which in turn correlated with low nuclear phospho-p38 expression (p=0.0094). In the early stages, positive p53 showed trends toward worse overall survival (OS) (p=0.062), whereas in the advanced stages, high Wip1 correlated with worse OS (p=0.0012). The univariate and multivariate analyses of prognostic factors indicated that high Wip1 was significant and independent for worse OS (p=0.011) in the advanced stages, but not in the early stages. Additionally, high Wip1 showed trends toward shorter treatment-free interval (TFI) in the advanced stages, but not in the early stages (p=0.083 vs. 0.93). Furthermore, high Wip1 was significantly associated with positive p53 only in the patients with shorter TFI (<6 months), but not in those with longer TFI (≥6 months) (p=0.036 vs. 0.34). Conclusions Wip1 appears to play a crucial role for the prognosis of OCCC through chemoresistance specifically in the advanced stages, implicating that Wip1 possibly serves as a reasonable therapeutic target for improving chemoresistance and poor prognosis of advanced-stage OCCC.
Collapse
Affiliation(s)
- Chenyang Xu
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeo Minaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan.
| | - Nan Qi
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Kaoru Fujieda
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Asami Suto
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroya Itagaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Sari Nakao
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Ochi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|