1
|
Yilmaz A, Ari Yuka S. The role of ceRNAs in breast cancer microenvironmental regulation and therapeutic implications. J Mol Med (Berl) 2024:10.1007/s00109-024-02503-y. [PMID: 39641797 DOI: 10.1007/s00109-024-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer. This phenomenon, termed as competing endogenous RNAs (ceRNAs), facilitates modeling the microenvironment through intercellular shuttles. Microenvironment ceRNA interactions have emerged as a frontier in the deep understanding of the complex mechanisms of breast cancer. In this review, we first discuss cellular ceRNAs in four key biological processes critical for microenvironmental regulation in breast cancer tissues: hypoxia, angiogenesis, immune regulations, and ECM remodeling. Further, we draw a complete portrait of microenvironment regulation by cell-to-cell cross-talk of shuttled ceRNAs and offer a framework of potential applications and challenges in overcoming the aggressive phenotype of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Alper Yilmaz
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selcen Ari Yuka
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| |
Collapse
|
2
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Liu Y, Zhou H, Yu Q, Wang Q. Hypomethylation-associated ELF3 helps nasopharyngeal carcinoma to escape immune surveillance via MUC16-mediated glycolytic metabolic reprogramming. Am J Physiol Cell Physiol 2024; 327:C1125-C1142. [PMID: 39219440 PMCID: PMC11481993 DOI: 10.1152/ajpcell.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Immune escape and metabolic reprogramming are two essential hallmarks of cancer. Mucin-16 (MUC16) has been linked to glycolysis and immune response in different cancers. However, its involvement in nasopharyngeal carcinoma (NPC) has not been well described. We seek to dissect the functions and detailed mechanisms of MUC16 in NPC. Bioinformatics prediction was performed to identify NPC-related molecules. MUC16 was significantly enhanced in NPC tissues, which was correlated with the advanced tumor stage of patients. Lentiviral plasmids-mediated MUC16 deletion inhibited the malignant behavior of NPC cells, and glycolysis inhibition by MUC16 deletion blocked immune escape in NPC cells. E74-like factor 3 (ELF3) bound to the MUC16 promoter promotes the transcription of MUC16. MUC16 overexpression reversed the repressive effect of ELF3 silencing on glycolysis and immune escape in NPC and accelerated tumor growth in vivo. Overexpression of ELF3 in NPC was associated with reduced DNA methylation in its promoter. Our findings revealed the role of the ELF3/MUC16 axis in the immune escape and metabolic reprogramming of NPC, providing potential therapeutic targets for NPC.NEW & NOTEWORTHY We identified the functions of E74-like factor 3 (ELF3) in glycolysis and immune escape of nasopharyngeal carcinoma cells for the first time. As a transcription factor, ELF3 promoted mucin-16 (MUC16) expression by binding to its promoter, leading to the glycolysis-mediated immune escape of nasopharyngeal carcinoma (NPC) cells. Targeting the ELF3/MUC16 axis generates a superior antitumor immune response, which will help establish a novel approach to restore protective antitumor immunity for NPC immunotherapy.
Collapse
Affiliation(s)
- Yueyang Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Hong Zhou
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qi Yu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H. Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications. J Biomed Sci 2024; 31:25. [PMID: 38408962 PMCID: PMC10895768 DOI: 10.1186/s12929-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Shiliang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Tong Mo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jun Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
6
|
Shen X, Tang J, Huang Y, Lan X, Lei C, Chen H. CircRNF111 Contributes to Adipocyte Differentiation by Elevating PPARγ Expression via miR-27a-3p. Epigenetics 2023; 18:2145058. [PMID: 36377797 PMCID: PMC9980459 DOI: 10.1080/15592294.2022.2145058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The content and distribution of adipocytes is an important factor that affects meat quality. Previous studies showed that circRNAs are involved in various physiological processes. Nevertheless, more research is needed to investigate the function of circRNAs in adipogenesis. The present study examines the effects of circRNF111 on adipogenesis of bovine preadipocyte and aims to elucidate the underlying molecular mechanisms. In our study, the sequence signature of circRNF111 was identified using bioinformatics, RNA-FISH, and sequencing. Mechanistically, knockdown or exogenous expression of circRNF111 in preadipocytes was done to prove the functional significance of circRNF111. Combined with bioinformatics, a dual fluorescein reporter system, and immunoprecipitation, the interaction between circRNF111, miR-27a-3p, and the target gene PPARγ was verified. The results reveal that circRNF111 is positively correlated with adipocyte differentiation. The newly identified bovine circRNF111 functions as a miR-27a-3p sponge to rescue the inhibitory effect of miR-27a-3p on the PPARγ gene, thereby promoting adipogenesis.
Collapse
Affiliation(s)
- Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China,CONTACT Hong Chen College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
8
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Lu L, Zeng Y, Yu Z, Chen S, Xie J, Rao B, Yang B, Qiu F, Lu J, Yang L. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci 2023; 19:2725-2739. [PMID: 37324942 PMCID: PMC10266078 DOI: 10.7150/ijbs.78588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Identification of mucin modulators is of remarkable significance to facilitate mucin-based antineoplastic therapy. However, little is known about circular RNAs (circRNAs) on regulating mucins. Dysregulated mucins and circRNAs were identified via high-throughput sequencing and their relationships with lung cancer survival were analyzed in tumor samples of 141 patients. The biological functions of circRABL2B were determined via gain- and loss-of-function experiments and exosome-packaged circRABL2B treatment in cells, patient-derived lung cancer organoids and nude mice. We identified that circRABL2B was negatively correlated with MUC5AC. Patients with low circRABL2B and high MUC5AC displayed the poorest survival (HR=2.00; 95% CI=1.12-3.57). Overexpressed circRABL2B significantly inhibited cell malignant phenotypes, while it knock-down exerted opposite effects. CircRABL2B interacted with YBX1 to inhibit MUC5AC, and subsequently suppressed integrin β4/pSrc/p53 signaling and impoverished cell stemness, and promoted erlotinib sensitivity. Exosome-packaged circRABL2B exerted significant anti-cancer actions in cells, patient-derived lung cancer organoids and nude mice. Meanwhile, circRABL2B in plasma exosomes could distinguish early-stage lung cancer patients from healthy controls. Finally, we found circRABL2B was downregulated at the transcriptional level, and EIF4a3 involved the formation of circRABL2B. In conclusion, our data suggest that circRABL2B counteracts lung cancer progression via MUC5AC/integrin β4/pSrc/p53 axis, which provides a rationale to enhance the efficacy of anti-MUCs treatment in lung cancer.
Collapse
Affiliation(s)
- Liming Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuyuan Zeng
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Ziqi Yu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Shizhen Chen
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianjiang Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510080, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Binyao Yang
- Innovation center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510735, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
10
|
Ghafouri-Fard S, Hussen BM, Shoorei H, Abak A, Poornajaf Y, Taheri M, Samadian M. Interactions between non-coding RNAs and HIF-1α in the context of cancer. Eur J Pharmacol 2023; 943:175535. [PMID: 36731723 DOI: 10.1016/j.ejphar.2023.175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a subunit of the HIF-1 transcription factor which is encoded by the HIF1A gene. This transcription factor is the main modulator of the cell response to hypoxia. Hypoxia-induced up-regulation of HIF-1α is involved in the pathogenesis of cancer. Recently, the interactions of several long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with HIF-1α have been reported. These ncRNAs regulate the expression of HIF-1α through different mechanisms. The regulatory roles of ncRNAs on HIF-1α are involved in the response of cancer cells to a wide range of anticancer drugs such as sorafenib, cisplatin, propofol, doxorubicin, and paclitaxel. Therefore, identification of the complex network between ncRNAs and HIF-1α not only facilitates the design of novel therapies but also promotes the efficacy of conventional anticancer treatments. This review aims to explain the interactions between these classes of ncRNAs and HIF-1α in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Karami Fath M, Shafieyari S, Ardalani N, Moumivand F, Kaviani Charati H, Zareei M, Mansoori Nia A, Zokaei M, Barati G. Hypoxia-circular RNA crosstalk to promote breast cancer. Pathol Res Pract 2023; 244:154402. [PMID: 36921546 DOI: 10.1016/j.prp.2023.154402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The expression of hypoxia-inducible factors (HIFs), particularly HIF-1, plays a major role in the adaptation of solid tumors to hypoxic conditions. The activation of the HIF pathway results in an expression of genes involved in the promotion of cell growth, proliferation, vascularization, metastasis, and therapeutic resistance. Circular RNA (CircRNA) is considered as a major regulator of gene expression. CircRNAs could regulate the HIF-1 pathway in cancer cells. In addition, they might be regulated by the HIF-1 pathway to promote cancer progression. Therefore, the crosstalk between hypoxia and circRNA might be involved in the pathogenesis of cancers, including breast cancer. In this review, we discussed the function of HIF-related circRNAs in the progression, angiogenesis, metabolic reprogramming, and stemness maintenance of breast cancer. In addition, the correlation between HIF-related circRNAs and clinical features of breast cancer is reviewed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saba Shafieyari
- Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasim Ardalani
- Faculty of Medicine, Islamic Azad University, Sari Branch, Sari, Iran
| | - Farzane Moumivand
- Faculty of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Zareei
- Faculty of Medicine, Islamic Azad University, Sari Branch, Sari, Iran
| | | | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
12
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
13
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
14
|
Yang J, Liu Z, Liu B, Sun L. Silencing of circCYP51A1 represses cell progression and glycolysis by regulating miR-490-3p/KLF12 axis in osteosarcoma under hypoxia. J Bone Oncol 2022; 37:100455. [PMID: 36276300 PMCID: PMC9579499 DOI: 10.1016/j.jbo.2022.100455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022] Open
Abstract
CircCYP51A1 was up-regulated in osteosarcoma cells under hypoxia. CircCYP51A1 mediated KLF12 expression through sponging miR-490-3p. Under hypoxia condition, circCYP51A1 knockdown inhibited cell progression and glycolysis by regulating miR-490-3p/ KLF12 axis.
Background Methods Results Conclusion
Collapse
|
15
|
Hypoxia-responsive circRNAs: A novel but important participant in non-coding RNAs ushered toward tumor hypoxia. Cell Death Dis 2022; 13:666. [PMID: 35915091 PMCID: PMC9343381 DOI: 10.1038/s41419-022-05114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Given the rapid developments in RNA-seq technologies and bioinformatic analyses, circular RNAs (circRNAs) have gradually become recognized as a novel class of endogenous RNAs, characterized by covalent loop structures lacking free terminals, which perform multiple biological functions in cancer genesis, progression and metastasis. Hypoxia, a common feature of the tumor microenvironments, profoundly affects several fundamental adaptive responses of tumor cells by regulating the coding and non-coding transcriptomes and renders cancer's phenotypes more aggressive. Recently, hypoxia-responsive circRNAs have been recognized as a novel player in hypoxia-induced non-coding RNA transcriptomics to modulate the hypoxic responses and promote the progression and metastasis of hypoxic tumors. Moreover, via extracellular vesicles-exosomes, these hypoxia-responsive circRNAs could transmit hypoxia responses from cancer cells to the cells of surrounding matrices, even more distant cells of other organs. Here, we have summarized what is known about hypoxia-responsive circRNAs, with a focus on their interaction with hypoxia-inducible factors (HIFs), regulation of hypoxic responses and relevance with malignant carcinoma's clinical features, which will offer novel insights on the non-coding RNAs' regulation of cancer cells under hypoxic stress and might aid the identification of new theranostic targets and define new therapeutic strategies for those cancer patients with resistance to radiochemotherapy, because of the ubiquity of tumoral hypoxia.
Collapse
|
16
|
Lin B, Nan J, Lu K, Zong Y, Fan W. Hsa_circ_0001982 promotes the proliferation, invasion, and multidrug resistance of osteosarcoma cells. J Clin Lab Anal 2022; 36. [PMID: 35576496 PMCID: PMC9279963 DOI: 10.1002/jcla.24493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone cancer mostly seen in people aged 10–25 years. This research aims to clarify the function of hsa_circ_0001982 in osteosarcoma (OS) and its effect on drug resistance, preliminarily exploring its mechanism. Methods The expression of hsa_circ_0001982 and miR‐143 in OS clinical tissues and cells was detected by real‐time fluorescence quantitative polymerase chain reaction (qRT‐PCR), MTT, colony formation assay, and transwell assay assessed cell proliferation, colony formation, migration, and invasion, respectively. The targeted relationship of hsa_circ_0001982 and miR‐143 was verified by a dual‐luciferase reporter assay. Result The expression of hsa_circ_0001982 was significantly increased in OS tissues and cells (MG63), as in well as chemoresistant OS tissues and cells (MG63/Dox). Overexpression of hsa_circ_0001982 promoted proliferation, colony formation, migration, invasion, and multidrug resistance in MG63 cells. By contrast, knockdown of hsa_circ_0001982 markedly reduced the resistance of MG63/Dox cells to doxorubicin (IC50 evidently reduced). Bioinformatic prediction showed that miR‐143 was a target miRNA of hsa_circ_0001982, and a dual‐luciferase reporter assay proved this. Further experiments revealed that miR‐143 expression was notably downregulated in OS tissues, chemoresistant OS tissues, and MG63/Dox cells. Moreover, miR‐143 was negatively correlated with hsa_circ_0001982 in OS cells and tissues. Conclusion The regulation of malignant behaviors such as proliferation, invasion, migration, and multidrug resistance of OS cells by hsa_circ_0001982 may be achieved by targeting miR‐143. Moreover, hsa_circ_0001982 is a potential target for early diagnosis and targeted therapy of OS.
Collapse
Affiliation(s)
- Bochuan Lin
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jing Nan
- Department of statistics, Long Nan Hospital, Daqing, Heilongjiang, China
| | - Kai Lu
- Department of vascular surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yi Zong
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Wencan Fan
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
17
|
Jiang T, Luo ZB. LOC102724163 promotes breast cancer cell proliferation and invasion by stimulating MUC19 expression. Oncol Lett 2022; 23:100. [PMID: 35154431 PMCID: PMC8822485 DOI: 10.3892/ol.2022.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a malignant disease and the most commonly diagnosed cancer in women. Numerous studies have previously verified the important role of long non-coding RNAs in a number of biological processes in BC. In the present study, analysis of The Cancer Genome Atlas database and reverse transcription-quantitative PCR demonstrated that LOC102724163 expression levels were significantly upregulated in BC tissues compared to matched adjacent normal tissues and were associated with an unfavorable prognosis in patients with BC. Gain or loss of function assays indicated that overexpression of LOC102724163 significantly increased tumorgenicity in vivo and cell migration, proliferation and invasion in vitro. In the mechanistical aspect, LOC102724163 sponged microRNA (miR)-508-5p to elevate MUC19 expression. Additionally, rescue assays ascertained the function of the LOC102724163/miR-508-5p/MUC19 axis in the proliferation and invasion of BC cells. To the best of our knowledge, this is the first study to have demonstrated that LOC102724163 may act as a competing endogenous RNA to control MUC19 expression levels by competitively sponging miR-508-5p to modulate BC progression. Therefore, the present study has provided new insights into BC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhong-Bing Luo
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
18
|
He M, Hu C, Deng J, Ji H, Tian W. Identification of a novel glycolysis-related signature to predict the prognosis of patients with breast cancer. World J Surg Oncol 2021; 19:294. [PMID: 34600547 PMCID: PMC8487479 DOI: 10.1186/s12957-021-02409-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) has a high incidence and mortality rate in females. Its conventional clinical characteristics are far from accurate for the prediction of individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods We analyzed the data of a training cohort from the Cancer Genome Atlas (TCGA) database and a validation cohort from the Gene Expression Omnibus (GEO) database. After the applications of Gene Set Enrichment Analysis (GSEA) and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed; the signature contained AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Furthermore, on the basis of expression levels of the six-gene signature, we constructed a risk score formula to classify the patients into high- and low-risk groups. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Later, a nomogram was developed to predict the outcomes of patients with risk score and clinical features over a period of 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues, which were taken as control. Results We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in the high-risk group showed poor prognosis than those in the low-risk group. The area under the curve (AUC) values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients with BC without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues; however, AK3 was an exception. Conclusion We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate prediction and might be useful in expanding the hypothesis in clinical research.
Collapse
Affiliation(s)
- Menglin He
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Jian Deng
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Hui Ji
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
19
|
Xu Q, Zhang Q, Dong M, Yu Y. MicroRNA-638 inhibits the progression of breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World J Surg Oncol 2021; 19:247. [PMID: 34416888 PMCID: PMC8379838 DOI: 10.1186/s12957-021-02363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies had shown that microRNA-638 (miR-638) exhibited different effects in malignant tumors. Moreover, the function of miR-638 has not been reported in breast cancer. Hence, we designed this research to explore the function of miR-638 in breast cancer. Methods Firstly, miR-638 expressions were measured in breast cancer tissues via RT-qPCR. Protein expressions were detected through immunocytochemical (IHC) assay and western blot analysis. Then, Cell Counting Kit-8 (CCK-8) assay and Transwell assay were conducted to observe proliferation and motility of the cells. Dual luciferase assay was performed to confirm the binding site between miR-638 and Homeobox protein Hox-A9 (HOXA9). Results Reduced expression of miR-638 was detected in breast cancer. And low miR-638 expression was related to poor prognosis in patients with breast cancer. Functionally, the viability, migration, and invasion of the breast cancer cells were suppressed by miR-638 overexpression. Furthermore, miR-638 can directly bind to HOXA9, and increased expression of HOXA9 was also detected in breast cancer. In particular, HOXA9 upregulation can impair anti-tumor effect of miR-638 in breast cancer, and miR-638 can hinder the Wnt/β-cadherin pathway and epithelial-mesenchymal transition (EMT) in breast cancer. Conclusion miR-638 inhibits breast cancer progression through binding to HOXA9.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Qianqian Zhang
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Mengli Dong
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China
| | - Yuan Yu
- Department of Oncology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, People's Republic of China.
| |
Collapse
|