1
|
Xu Y, Ma Z, Wang Y, Zhang L, Ye J, Chen Y, Yuan Z. CuPCA: a web server for pan-cancer association analysis of large-scale cuproptosis-related genes. Database (Oxford) 2024; 2024:baae075. [PMID: 39231258 PMCID: PMC11373563 DOI: 10.1093/database/baae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Copper-induced cell death is a novel mechanism of cell death, which is defined as cuproptosis. The increasing level of copper can produce toxicity in cells and may cause the occurrence of cell death. Several previous studies have proved that cuproptosis has a tight association with various cancers. Thus, the discovery of relationships between cuproptosis-related genes (CRGs) and human cancers is of great importance. Pan-cancer analysis can efficiently help researchers find out the relationship between multiple cancers and target genes precisely and make various prognostic analyses on cancers and cancer patients. Pan-cancer web servers can provide researchers with direct results of pan-cancer prognostic analyses, which can greatly improve the efficiency of their work. However, to date, no web server provides pan-cancer analysis about CRGs. Therefore, we introduce the cuproptosis pan-cancer analysis database (CuPCA), the first database for various analysis results of CRGs through 33 cancer types. CuPCA is a user-friendly resource for cancer researchers to gain various prognostic analyses between cuproptosis and cancers. It provides single CRG pan-cancer analysis, multi-CRGs pan-cancer analysis, multi-CRlncRNA pan-cancer analysis, and mRNA-circRNA-lncRNA conjoint analysis. These analysis results can not only indicate the relationship between cancers and cuproptosis at both gene level and protein level, but also predict the conditions of different cancer patients, which include their clinical condition, survival condition, and their immunological condition. CuPCA procures the delivery of analyzed data to end users, which improves the efficiency of wide research as well as releases the value of data resources. Database URL: http://cupca.cn/.
Collapse
Affiliation(s)
- Yishu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhenshu Ma
- College of Computer Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Long Zhang
- College of Art, Beijing Forestry University, Beijing 100083, China
| | - Jiaming Ye
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Wang X, Zhang XY, Liao NQ, He ZH, Chen QF. Identification of ribosome biogenesis genes and subgroups in ischaemic stroke. Front Immunol 2024; 15:1449158. [PMID: 39290696 PMCID: PMC11406505 DOI: 10.3389/fimmu.2024.1449158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Xiao-Yu Zhang
- The College of Life Sciences, Northwest University, Xian, China
| | - Nan-Qing Liao
- School of Medicine, Guangxi University, Nanning, China
| | - Ze-Hua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Xu Z, Wang J, Wang G. Weighted gene co-expression network analysis for hub genes in colorectal cancer. Pharmacol Rep 2024; 76:140-153. [PMID: 38150140 DOI: 10.1007/s43440-023-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This study is designed to explore hub genes participating in colorectal cancer (CRC) development through weighted gene co-expression network analysis (WGCNA). METHODS Expression profiles of CRC and normal samples were retrieved from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA), and were subjected to WGCNA to filter differentially expressed genes with significant association with CRC. Functional enrichment analysis and protein-protein interaction (PPI) analysis were carried out to filter the candidate genes, further and survival analysis was performed for the candidate genes to obtain potential regulatory hub genes in CRC. Expression analysis was conducted for the candidate genes and a multifactor model was established. RESULTS After differential analysis and WGCNA, 289 candidate genes were filtered from the GEO and TCGA. Further functional enrichment analysis demonstrated possible regulatory pathways and functions. PPI analysis filtered 15 hub genes and survival analysis indicated a significant correlation of CLCA1, CLCA4, and CPT1A with prognosis of patients with CRC. The multifactor Cox risk model established based on the three genes revealed that if the three genes were a gene set, they had well predictive capacity for the prognosis of patients with CRC. CONCLUSIONS CLCA1, CLCA4, and CPT1A express at low levels in CRC and function as core anti-tumor genes. As a gene set, they can predict prognosis well.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Oncology Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Jianing Wang
- Department of Gastrointestinal Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Guosheng Wang
- Department of Pancreaticobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150007, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Gao R, Zhou D, Qiu X, Zhang J, Luo D, Yang X, Qian C, Liu Z. Cancer Therapeutic Potential and Prognostic Value of the SLC25 Mitochondrial Carrier Family: A Review. Cancer Control 2024; 31:10732748241287905. [PMID: 39313442 PMCID: PMC11439189 DOI: 10.1177/10732748241287905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Transporters of the solute carrier family 25 (SLC25) regulate the intracellular distribution and concentration of nucleotides, amino acids, dicarboxylates, and vitamins within the mitochondrial and cytoplasmic matrices. This mechanism involves changes in mitochondrial function, regulation of cellular metabolism, and the ability to provide energy. In this review, important members of the SLC25 family and their pathways affecting tumorigenesis and progression are elucidated, highlighting the diversity and complexity of these pathways. Furthermore, the significant potential of the members of SLC25 as both cancer therapeutic targets and biomarkers will be emphasized.
Collapse
Affiliation(s)
- Renzhuo Gao
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xingpeng Qiu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Zhang
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohong Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Caiyun Qian
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhuoqi Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Zeng X, Han Z, Chen K, Zeng P, Tang Y, Li L. Single-Cell Analyses Reveal Necroptosis's Potential Role in Neuron Degeneration and Show Enhanced Neuron-Immune Cell Interaction in Parkinson's Disease Progression. PARKINSON'S DISEASE 2023; 2023:5057778. [PMID: 38149092 PMCID: PMC10751163 DOI: 10.1155/2023/5057778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Parkinson's disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)'s interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was significantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing function in PD samples. Additionally, we identified CLDN11 as a novel interaction pattern specific to necroptosis neurons and MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. These findings suggest that MG were significantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron inflammation in PD. Our analyses provide insights into the causes of neuron death and inflammation in PD from single-cell resolution, which could be seriously considered in clinical trials.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Zhifen Han
- Department of Ultrasound, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Kehan Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Peng Zeng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Yidan Tang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Lijuan Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yang W, An L, Li Y, Qian S. A cellular senescence-related genes model allows for prognosis and treatment stratification of cervical cancer: a bioinformatics analysis and external verification. Aging (Albany NY) 2023; 15:9408-9425. [PMID: 37768206 PMCID: PMC10564413 DOI: 10.18632/aging.204981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. METHODS The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. RESULTS We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan-Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. CONCLUSIONS Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.
Collapse
Affiliation(s)
- Weiwei Yang
- Gynecology Department 2, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei Province, China
| | - Lijuan An
- Gynecology Department 2, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei Province, China
| | - Yanfei Li
- Gynecology Department 2, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei Province, China
| | - Sumin Qian
- Gynecology Department 2, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei Province, China
| |
Collapse
|
7
|
Cao Z, Guan L, Yu R, Yang F, Chen J. High Expression of Heterogeneous Nuclear Ribonucleoprotein A1 Facilitates Hepatocellular Carcinoma Growth. J Hepatocell Carcinoma 2023; 10:517-530. [PMID: 37034304 PMCID: PMC10075271 DOI: 10.2147/jhc.s402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) represents one of the most common tumors in the world. Our study aims to explore new markers and therapeutic targets for HCC. Heterogeneous Nuclear ribonucleoprotein A1 (hnRNPA1) has recently been found to be involved in the progression of several types of cancer, but its role in HCC remains uncovered. Methods We performed bioinformatic analysis to preliminarily show the relationship between hnRNPA1 and liver cancer. Then the correlation of the hnRNPA1 gene expression with clinicopathological characteristics of HCC patients was verified by human liver cancer tissue microarrays. The functional role of this gene was evaluated by in vivo and vitro experiments. Results Results showed that the expression of hnRNPA1 was upregulated in HCC tissues and was associated with pathological stage of HCC patients. Knockdown of hnRNPA1 gene markedly inhibited tumor growth in vivo, and reversed the effects on proliferation, migration and invasion and promoted apoptosis in vitro. Furthermore, down-regulation of hnRNPA1 gene expression can inhibit the activity of the MEK/ERK pathway. Conclusion In our work, we combined bioinformatic analysis with in vivo and in vitro experiments to initially elucidate the function of hnRNPA1 in liver cancer, which may help to explore biomarkers and therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Li Guan
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Correspondence: Jie Chen; Fan Yang, Email ;
| |
Collapse
|
8
|
Ross KE, Zhang G, Akcora C, Lin Y, Fang B, Koomen J, Haura EB, Grimes M. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol 2023; 19:e1010690. [PMID: 36996232 PMCID: PMC10089347 DOI: 10.1371/journal.pcbi.1010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.
Collapse
Affiliation(s)
- Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Cuneyt Akcora
- Department of Computer Science and Statistics, University of Manitoba, Winnipeg, Manitoba Canada
| | - Yu Lin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mark Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
9
|
Jing W, Zhang R, Chen X, Zhang X, Qiu J. Association of Glycosylation-Related Genes with Different Patterns of Immune Profiles and Prognosis in Cervical Cancer. J Pers Med 2023; 13:jpm13030529. [PMID: 36983711 PMCID: PMC10054345 DOI: 10.3390/jpm13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: Although the application of modern diagnostic tests and vaccination against human papillomavirus has markedly reduced the incidence and mortality of early cervical cancer, advanced cervical cancer still has a high death rate worldwide. Glycosylation is closely associated with tumor invasion, metabolism, and the immune response. This study explored the relationship among glycosylation-related genes, the immune microenvironment, and the prognosis of cervical cancer. (2) Methods and results: Clinical information and glycosylation-related genes of cervical cancer patients were downloaded from the TCGA database and the Molecular Signatures Database. Patients in the training cohort were split into two subgroups using consensus clustering. A better prognosis was observed to be associated with a high immune score, level, and status using ESTIMATE, CIBERSORT, and ssGSEA analyses. The differentially expressed genes were revealed to be enriched in proteoglycans in cancer and the cytokine–cytokine receptor interaction, as well as in the PI3K/AKT and the Hippo signaling pathways according to functional analyses, including GO, KEGG, and PPI. The prognostic risk model generated using the univariate Cox regression analysis, LASSO algorithm and multivariate Cox regression analyses, and prognostic nomogram successfully predicted the survival and prognosis of cervical cancer patients. (3) Conclusions: Glycosylation-related genes are correlated with the immune microenvironment of cervical cancer and show promising clinical prediction value.
Collapse
Affiliation(s)
- Wanling Jing
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
| | - Runjie Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
| | - Xinyi Chen
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
- Correspondence: (X.Z.); (J.Q.)
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
- Correspondence: (X.Z.); (J.Q.)
| |
Collapse
|
10
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
11
|
Identification and Validation a Necroptosis-Related Prognostic Signature in Cervical Cancer. Reprod Sci 2022; 30:2003-2015. [PMID: 36576713 DOI: 10.1007/s43032-022-01155-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Necroptosis is a promising novel target for cervical cancer therapy. Nevertheless, differentially expressed necroptosis-related genes (NRGs) in cervical cancer and their associations with prognosis are far from fully clarified. In this study, differentially expressed NRGs (DE-NRGs) were screened out and their bio-function was elucidated. Subsequently, a prognostic scoring model based on the regression coefficients of the screened out NRGs and their corresponding mRNA expressions were constructed and validated. Finally, the survival probability of cervical cancer patients based on the constructed prognostic scoring model in 3 and 5 years was predicted and assessed. We found 17 DE-NRGs in cervical cancer tissues which were closely related to cancer progression, and most of them were significantly highly expressed. Furthermore, 3 NRG were confirmed as the prognostic signature genes from 17 DE-NRGs by regression analysis. Overall survival predicted through our prognostic scoring model was lower in the high-risk group than in the low-risk group (p < 0.05) in both the TCGA cohort and the external GEO44001 validation cohort. What's more, the prediction performance of our prognostic scoring models well verified by the ROC curve, and the risk score calculated could act as an independent prognostic factor for cervical cancer patients. The calibration curve and C-index (0.776) of the nomogram analysis suggested that the predictive performance of the nomogram was satisfactory. Our study identified and validated a necroptosis-related prognostic signature in cervical cancer, which could well predict the prognosis for cervical cancer patients.
Collapse
|
12
|
Establishment and Validation of a Tumor Microenvironment Prognostic Model for Predicting Bladder Cancer Survival Status Based on Integrated Bioinformatics Analyses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4351005. [PMID: 36225190 PMCID: PMC9550453 DOI: 10.1155/2022/4351005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
This study was designed to analyze the characteristics of bladder cancer-related genes and establish a prognostic model of bladder cancer. The model passed an independent external validation set test. Differentially expressed genes (DEGs) related to bladder cancer were obtained from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. WGCNA was used to fit the GSE188715, TCGA, and GTEx RNA-Seq data. Fusing the module genes with the high significance in tumor development extracted from WGCNA and DEGs screened from multiple databases. 709 common prognostic-related genes were obtained. The 709 genes were enriched in the Gene Ontology database. Univariate Cox and LASSO regression analyses were used to screen out 21 prognostic-related genes and further multivariate Cox regression established a bladder cancer prognostic model consisting of 8 genes. After the eight-gene prognostic model was established, the Human Protein Atlas (HPA) database, GEPIA 2, and quantitative real-time PCR (qRT-PCR) verified the differential expression of these genes. Gene Set Enrichment Analysis and immune infiltration analysis found biologically enrichment pathways and cellular immune infiltration related to this bladder cancer prognostic model. Then, we selected bladder cancer patients in the TCGA database to evaluate the predictive ability of the model on the training set and validation set. The overall survival status of the two TCGA patient groups in the training and the test sets was obtained by Kaplan–Meier survival analysis. Three-year survival rates in the training and test sets were 37.163% and 25.009% for the low-risk groups and 70.000% and 62.235% for the high-risk groups, respectively. Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUCs) for the training and test sets were above 0.7. In an external independent validation database GSE13507, Kaplan–Meier survival analysis showed that the three-year survival rates of the high-risk and the low-risk groups in this database were 56.719% and 76.734%, respectively. The AUCs of the ROC drawn in the external validation set were both above 0.65. Here, we constructed a prognostic model of bladder cancer based on data from the GEO, TCGA, and GTEx databases. This model has potential prognostic and clinical auxiliary diagnostic value.
Collapse
|
13
|
Reza MS, Hossen MA, Harun-Or-Roshid M, Siddika MA, Kabir MH, Mollah MNH. Metadata analysis to explore hub of the hub-genes highlighting their functions, pathways and regulators for cervical cancer diagnosis and therapies. Discov Oncol 2022; 13:79. [PMID: 35994213 PMCID: PMC9395557 DOI: 10.1007/s12672-022-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the protein-protein interaction (PPI) network analysis. Then, we validated their differential expression patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcriptional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this study might be the useful resources for CC diagnosis and therapies.
Collapse
Affiliation(s)
- Md. Selim Reza
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Alim Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Mst. Ayesha Siddika
- Microbiology Lab, Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Hadiul Kabir
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
14
|
Sun K, Hong JJ, Chen DM, Luo ZX, Li JZ. Identification and validation of necroptosis-related prognostic gene signature and tumor immune microenvironment infiltration characterization in esophageal carcinoma. BMC Gastroenterol 2022; 22:344. [PMID: 35840882 PMCID: PMC9284853 DOI: 10.1186/s12876-022-02423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal carcinoma (ESCA) is a common malignancy with a poor prognosis. Previous research has suggested that necroptosis is involved in anti-tumor immunity and promotes oncogenesis and cancer metastasis, which in turn affects tumor prognosis. However, the role of necroptosis in ESCA is unclear. This study aimed to investigate the relationships between necroptosis-related genes (NRGs) and ESCA. Methods and results The clinical data and gene expression profiles of ESCA patients were extracted from The Cancer Genome Atlas (TCGA), and 159 NRGs were screened from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We then identified 52 differentially expressed NRGs associated with ESCA and used them for further analysis. Gene ontology (GO) and KEGG functional enrichment analyses showed that these NRGs were mostly associated with the regulation of necroptosis, Influenza A, apoptosis, NOD-like receptor, and NF-Kappa B signaling pathway. Next, univariate and multivariate Cox regression and LASSO analysis were used to identify the correlation between NRGs and the prognosis of ESCA. We constructed a prognostic model to predict the prognosis of ESCA based on SLC25A5, PPIA, and TNFRSF10B; the model classified patients into high- and low-risk subgroups based on the patient’s risk score. Furthermore, the receiver operating characteristic (ROC) curve was plotted, and the model was affirmed to perform moderately well for prognostic predictions. In addition, Gene Expression Omnibus (GEO) datasets were selected to validate the applicability and prognostic value of our predictive model. Based on different clinical variables, we compared the risk scores between the subgroups of different clinical features. We also analyzed the predictive value of this model for drug sensitivity. Moreover, Immunohistochemical (IHC) validation experiments explored that these three NRGs were expressed significantly higher in ESCA tissues than in adjacent non-tumor tissues. In addition, a significant correlation was observed between the three NRGs and immune-cell infiltration and immune checkpoints in ESCA. Conclusions In summary, we successfully constructed and validated a novel necroptosis-related signature containing three genes (SLC25A5, PPIA, and TNFRSF10B) for predicting prognosis in patients with ESCA; these three genes might also play a crucial role in the progression and immune microenvironment of ESCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02423-6.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Juan-Juan Hong
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China
| | - Dong-Mei Chen
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.,Guilin Medical University, Guilin, 541010, Guangxi Zhuang Autonomous Region, China
| | - Zhan-Xiong Luo
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| | - Jing-Zhang Li
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
15
|
Zhang J, Buranjiang G, Mutalifu Z, Jin H, Yao L. KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27 Kip1 pathway. World J Surg Oncol 2022; 20:125. [PMID: 35439960 PMCID: PMC9016959 DOI: 10.1186/s12957-022-02585-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Background Cervical cancer is a kind of malignant gynecological tumor. The first choice for treating cervical cancer is still a combination of surgery and chemoradiotherapy, but the 5-year survival rate remains poor. Therefore, researchers are trying to find new ways to diagnose and treat cervical cancer early. Methods The expression level of KIF14 in cells and tissues was determined via qRT–PCR. The ability of the cells to proliferate, migrate, and invade was examined using CCK-8 assay kits, colony formation assays, and Transwell chambers. The expression levels of Cyclin D1, Cyclin B1, p21, and p27 were also detected using western blot assays. Results The results suggested that p27 is a key regulatory factor in the KIF14-mediated regulation of the cell cycle. In addition, KIF14 knockdown promotes malignancy in cervical cancer cells by inhibiting p27 degradation, resulting in cell cycle arrest. Conclusions KIF14 is an oncogene in cervical cancer, and knocking down KIF14 causes cell cycle arrest by inhibiting p27 degradation, thus affecting cell viability, proliferation, and migration. These results provide a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xinjiang Medical University, Nanhu Road, Urumqi, Xinjiang, 830011, China
| | - Gulimire Buranjiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xinjiang Medical University, Nanhu Road, Urumqi, Xinjiang, 830011, China
| | - Zuohelaguli Mutalifu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xinjiang Medical University, Nanhu Road, Urumqi, Xinjiang, 830011, China
| | - Hua Jin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xinjiang Medical University, Nanhu Road, Urumqi, Xinjiang, 830011, China
| | - Liyan Yao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xinjiang Medical University, Nanhu Road, Urumqi, Xinjiang, 830063, China.
| |
Collapse
|
16
|
Bioinformatics Screening of Potential Biomarkers from mRNA Expression Profiles to Discover Drug Targets and Agents for Cervical Cancer. Int J Mol Sci 2022; 23:ijms23073968. [PMID: 35409328 PMCID: PMC8999699 DOI: 10.3390/ijms23073968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.
Collapse
|
17
|
Su Y, Tian X, Gao R, Guo W, Chen C, Chen C, Jia D, Li H, Lv X. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput Biol Med 2022; 145:105409. [PMID: 35339846 DOI: 10.1016/j.compbiomed.2022.105409] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
Advanced metastasis of colon cancer makes it more difficult to treat colon cancer. Finding the markers of colon cancer (Colon Cancer) can diagnose the stage of cancer in time and improve the prognosis with timely treatment. This paper uses gene expression profiling data from The Cancer Genome Atlas (TCGA) for the diagnosis of colon cancer and its staging. In this study, we first selected the gene modules with the greatest correlation with cancer by Weighted Gene Co-expression Network Analysis (WGCNA), extracted the characteristic genes for differential expression results using the least absolute shrinkage and selection operator algorithm (Lasso) and performed survival analysis, and then combined the genes in the modules with the Lasso-extracted feature genes were combined to diagnose colon cancer versus healthy controls using RF, SVM and decision trees, and colon cancer staging was diagnosed using differentially expressed genes for each stage. Finally, Protein-Protein Interaction Networks (PPI) networks were done for 289 genes to identify clusters of aggregated proteins for survival analysis. Finally, the RF model had the best results in the diagnosis of colon cancer versus control group fold cross-validation with an average accuracy of 99.81%, F1 value reaching 0.9968, accuracy of 99.88%, and recall of 99.5%, and an average accuracy of 91.5%, F1 value reaching 0.7679, accuracy of 86.94%, and recall in the diagnosis of colon cancer stages I, II, III and IV. The recall rate reached 73.04%, and eight genes associated with colon cancer prognosis were identified for GCNT2, GLDN, SULT1B1, UGT2B15, PTGDR2, GPR15, BMP5 and CPT2.
Collapse
Affiliation(s)
- Ying Su
- College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Xuecong Tian
- College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Rui Gao
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Wenjia Guo
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Cloud Computing Engineering Technology Research Center of Xinjiang, Kelamayi, 834099, China
| | - Dongfang Jia
- College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Hongtao Li
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, Xinjiang, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| |
Collapse
|
18
|
Xu J, Geng J, Zhang Q, Fan Y, Qi Z, Xia T. Association of three micro-RNA gene polymorphisms with the risk of cervical cancer: a meta-analysis and systematic review. World J Surg Oncol 2021; 19:346. [PMID: 34911543 PMCID: PMC8675500 DOI: 10.1186/s12957-021-02463-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Regulation of single nucleotide polymorphisms (SNP) in micro-RNA (miRNA) on the host cells may be one of the most important factors influencing the occurrence of cervical cancer based on the prevalence of HPV infection and the development of cervical cancer. In order to explore the contribution of miRNA polymorphism to the occurrence and development of cervical cancer, we conducted an analytical study. METHODS We selected the polymorphisms of three widely studied miRNAs (miRNA-146a rs2910164, miRNA-499 rs3746444, and miRNA-196a2 rs11614913). Then, we conducted a meta-analysis (for the first time) to investigate their susceptibility to cervical cancer. Case control studies on the correlation between these three miRNAs and cervical cancer susceptibility were investigated by searching on from Pubmed, The Cochrane Library, Embase, CBM, CNKI, Wanfang database, and VIP database. Basic characteristics were recorded and meta-analysis of the case studies was performed using the STATA 15.1 software. RESULTS The miRNA-146a rs2910164 mutation significantly reduced the risk of cervical cancer in both recessive model (OR = 0.804, 95% CI = 0.652-0.992, P = 0.042; CC vs. CG+GG) and allelic model (OR = 0.845, 95% CI = 0.721-0.991, P = 0.038; C vs. G). There was no significant correlation between miRNA-499 rs3746444 and the risk of cervical cancer. The miRNA-196a2 rs11614913 mutation was significantly associated with a reduced risk of cervical cancer in homozygous model (OR = 0.641, 95% CI = 0.447-0.919, P = 0.016; TT vs. CC), dominant model (OR = 0.795, 95% CI = 0.636-0.994, P = 0.045; CT+TT vs. CC), recessive model (OR = 0.698, 95% CI = 0.532-0.917, P = 0.01; TT vs. CC+CT), and allelic models (OR = 0.783, 95% CI = 0.643-0.954, P = 0.015, T vs. C). CONCLUSION In summary, this meta-analysis shows that the mutant genotypes of miRNA-146a rs2910164 and miRNA-196a2 rs11614913 are associated with a reduced risk of cervical cancer. Therefore, they may be two gene regulatory points for the prevention of cervical cancer. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021270079.
Collapse
Affiliation(s)
- Jingyu Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Junze Geng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Qiang Zhang
- Department of Oncology, Army Medical Center of PLA, Chong Qing, 400042, China
| | - Yihua Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Zijun Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Tian Xia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|