1
|
Ma Y, Fang F, Liao K, Zhang J, Wei C, Liao Y, Zhao B, Fang Y, Chen Y, Zhang X, Tang D. Identification and validation of the clinical prediction model and biomarkers based on chromatin regulators in colon cancer by integrated analysis of bulk- and single-cell RNA sequencing data. Transl Cancer Res 2024; 13:1290-1313. [PMID: 38617504 PMCID: PMC11009811 DOI: 10.21037/tcr-23-1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 04/16/2024]
Abstract
Background Chromatin regulators (CRs) are implicated in the development of cancer, but a comprehensive investigation of their role in colon adenocarcinoma (COAD) is inadequate. The purpose of this study is to find CRs that can provide recommendations for clinical diagnosis and treatment, and to explore the reasons why they serve as critical CRs. Methods We obtained data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted Gene Co-Expression Network Analysis (WGCNA) screened tumor-associated CRs. LASSO-Cox regression was used to construct the model and to screen key CRs together with support vector machine (SVM), the univariate Cox regression. We used single-cell data to explore the expression of CRs in cells and their communication. Immune infiltration, immune checkpoints, mutation, methylation, and drug sensitivity analyses were performed. Gene expression was verified by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Pan-cancer analysis was used to explore the importance of hub CRs. Results We finally obtained 32 tumor-associated CRs. The prognostic model was constructed based on RCOR2, PPARGC1A, PKM, RAC3, PHF19, MYBBP1A, ORC1, and EYA2 by the LASSO-Cox regression. Single-cell data revealed that the model was immune-related. Combined with immune infiltration analysis, immune checkpoint analysis, and tumor immune dysfunction and exclusion (TIDE) analysis, the low-score risk group had more immune cell infiltration and better immune response. Mutation and methylation analysis showed that multiple CRs may be mutated and methylated in colon cancer. Drug sensitivity analysis revealed that the low-risk group may be more sensitive to several drugs and PKM was associated with multiple drugs. Combined with machine learning, PKM is perhaps the most critical gene in CRs. Pan-cancer analysis showed that PKM plays a role in the prognosis of cancers. Conclusions We developed a prognostic model for COAD based on CRs. Increased expression of the core gene PKM is linked with a poor prognosis in several malignancies.
Collapse
Affiliation(s)
- Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Fang Fang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yongkun Fang
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wang Y, Guo X, Niu Z, Huang X, Wang B, Gao L. DeepCBS: shedding light on the impact of mutations occurring at CTCF binding sites. Front Genet 2024; 15:1354208. [PMID: 38463168 PMCID: PMC10920299 DOI: 10.3389/fgene.2024.1354208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
CTCF-mediated chromatin loops create insulated neighborhoods that constrain promoter-enhancer interactions, serving as a unit of gene regulation. Disruption of the CTCF binding sites (CBS) will lead to the destruction of insulated neighborhoods, which in turn can cause dysregulation of the contained genes. In a recent study, it is found that CTCF/cohesin binding sites are a major mutational hotspot in the cancer genome. Mutations can affect CTCF binding, causing the disruption of insulated neighborhoods. And our analysis reveals a significant enrichment of well-known proto-oncogenes in insulated neighborhoods with mutations specifically occurring in anchor regions. It can be assumed that some mutations disrupt CTCF binding, leading to the disruption of insulated neighborhoods and subsequent activation of proto-oncogenes within these insulated neighborhoods. To explore the consequences of such mutations, we develop DeepCBS, a computational tool capable of analyzing mutations at CTCF binding sites, predicting their influence on insulated neighborhoods, and investigating the potential activation of proto-oncogenes. Futhermore, DeepCBS is applied to somatic mutation data of liver cancer. As a result, 87 mutations that disrupt CTCF binding sites are identified, which leads to the identification of 237 disrupted insulated neighborhoods containing a total of 135 genes. Integrative analysis of gene expression differences in liver cancer further highlights three genes: ARHGEF39, UBE2C and DQX1. Among them, ARHGEF39 and UBE2C have been reported in the literature as potential oncogenes involved in the development of liver cancer. The results indicate that DQX1 may be a potential oncogene in liver cancer and may contribute to tumor immune escape. In conclusion, DeepCBS is a promising method to analyze impacts of mutations occurring at CTCF binding sites on the insulator function of CTCF, with potential extensions to shed light on the effects of mutations on other functions of CTCF.
Collapse
Affiliation(s)
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | | | | | | | | |
Collapse
|
3
|
Larionova I, Tashireva L. Immune gene signatures as prognostic criteria for cancer patients. Ther Adv Med Oncol 2023; 15:17588359231189436. [PMID: 37547445 PMCID: PMC10399276 DOI: 10.1177/17588359231189436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Recently, the possibility of using immune gene signatures (IGSs) has been considered as a novel prognostic tool for numerous cancer types. State-of-the-art methods of genomic, transcriptomic, and protein analysis have allowed the identification of a number of immune signatures correlated to disease outcome. The major adaptive and innate immune components are the T lymphocytes and macrophages, respectively. Herein, we collected essential data on IGSs consisting of subsets of T cells and tumor-associated macrophages and indicating cancer patient outcomes. We discuss factors that can introduce errors in the recognition of immune cell types and explain why the significance of immune signatures can be interpreted with uncertainty. The unidirectional functions of cell types should be entirely addressed in the signatures constructed by the combination of innate and adaptive immune cells. The state of the antitumor immune response is the key basis for IGSs and should be considered in gene signature construction. We also analyzed immune signatures for the prediction of immunotherapy response. Finally, we attempted to explain the present-day limitations in the use of immune signatures as robust criteria for prognosis.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 36 Lenina Av., Tomsk 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov Tashireva
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
4
|
Miao Y, Yuan Q, Wang C, Feng X, Ren J, Wang C. Comprehensive Characterization of RNA-Binding Proteins in Colon Adenocarcinoma Identifies a Novel Prognostic Signature for Predicting Clinical Outcomes and Immunotherapy Responses Based on Machine Learning. Comb Chem High Throughput Screen 2023; 26:163-182. [PMID: 35379120 DOI: 10.2174/1386207325666220404125228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are crucial factors that function in the posttranscriptional modification process and are significant in cancer. OBJECTIVE This research aimed for a multigene signature to predict the prognosis and immunotherapy response of patients with colon adenocarcinoma (COAD) based on the expression profile of RNA-binding proteins (RBPs). METHODS COAD samples retrieved from the TCGA and GEO datasets were utilized for a training dataset and a validation dataset. Totally, 14 shared RBP genes with prognostic significance were identified. Non-negative matrix factorization clusters defined by these RBPs could stratify COAD patients into two molecular subtypes. Cox regression analysis and identification of 8-gene signature categorized COAD patients into high- and low-risk populations with significantly different prognosis and immunotherapy responses. RESULTS Our prediction signature was superior to another five well-established prediction models. A nomogram was generated to quantificationally predict the overall survival (OS) rate, validated by calibration curves. Our findings also indicated that high-risk populations possessed an enhanced immune evasion capacity and low-risk populations might benefit immunotherapy, especially for the joint combination of PD-1 and CTLA4 immunosuppressants. DHX15 and LARS2 were detected with significantly different expressions in both datasets, which were further confirmed by qRTPCR and immunohistochemical staining. CONCLUSION Our observations supported an eight-RBP-related signature that could be applied for survival prediction and immunotherapy response of patients with COAD.
Collapse
Affiliation(s)
- Ye Miao
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoshi Feng
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Odermatt M, Khan J, Parvaiz A. Supervised training of laparoscopic colorectal cancer resections does not adversely affect short- and long-term outcomes: a Propensity-score-matched cohort study. World J Surg Oncol 2022; 20:98. [PMID: 35351126 PMCID: PMC8962584 DOI: 10.1186/s12957-022-02560-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Supervised training of laparoscopic colorectal cancer surgery to fellows and consultants (trainees) may raise doubts regarding safety and oncological adequacy. This study investigated these concerns by comparing the short- and long-term outcomes of matched supervised training cases to cases performed by the trainer himself. Methods A prospective database was analysed retrospectively. All elective laparoscopic colorectal cancer resections in curative intent of adult patients (≥ 18 years) which were performed (non-training cases) or supervised to trainees (training cases) by a single laparoscopic expert surgeon (trainer) were identified. All trainees were specialist surgeons in training for laparoscopic colorectal surgery. Supervised training was standardised. Training cases were 1:1 propensity-score matched to non-training cases using age, American Society of Anesthesiologists (ASA) grade, tumour site (rectum, left and right colon) and American Joint Committee on Cancer (AJCC) tumour stage. The resulting groups were analysed for both short- (operative, oncological, complications) and long-term (time to recurrence, overall and disease-free survival) outcomes. Results From 10/2006 to 2/2016, a total of 675 resections met the inclusion criteria, of which 95 were training cases. These resections were matched to 95 non-training cases. None of the matched covariates exhibited an imbalance greater than 0.25 (│d│>0.25). There were no significant differences in short- (length of procedure, conversion rate, blood loss, postoperative complications, R0 resections, lymph node harvest) and long-term outcomes. When comparing training cases to non-training cases, 5-year overall and disease-free survival rates were 71.6% (62.4–82.2) versus 81.9% (74.2–90.4) and 70.0% (60.8–80.6) versus 73.6% (64.9–83.3), respectively (not significant). The corresponding hazard ratios (95% confidence intervals, p) were 0.57 (0.32–1.02, p = 0.057) and 0.87 (0.51–1.48, p = 0.61), respectively (univariate Cox proportional hazard model). Conclusions Standardised supervised training of laparoscopic colorectal cancer procedures to specialist surgeons may not adversely impact short- and long-term outcomes. This result may also apply to newer surgical techniques as long as standardised teaching methods are followed.
Collapse
|
6
|
Heawchaiyaphum C, Pientong C, Yoshiyama H, Iizasa H, Panthong W, Ekalaksananan T. General Features and Novel Gene Signatures That Identify Epstein-Barr Virus-Associated Epithelial Cancers. Cancers (Basel) 2021; 14:cancers14010031. [PMID: 35008199 PMCID: PMC8750470 DOI: 10.3390/cancers14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with various types of human malignancies, including nasopharyngeal carcinoma (NPC), EBV-associated gastric carcinoma (EBVaGC), and oral squamous cell carcinoma (OSCC). The present study aimed to identify gene signatures and common signaling pathways that can be used to predict the prognosis of EBV-associated epithelial cancers (EBVaCAs) by performing an integrated bioinformatics analysis of cell lines and tumor tissues. We identified 12 differentially expressed genes (DEGs) in the EBVaCA cell lines. Among them, only four DEGs, including BAMBI, SLC26A9, SGPP2, and TMC8, were significantly upregulated. However, SLC26A9 and TMC8, but not BAMBI and SGPP2, were significantly upregulated in EBV-positive tumor tissues compared to EBV-negative tumor tissues. Next, we identified IL6/JAK/STAT3 and TNF-α/NF-κB signaling pathways as common hallmarks of EBVaCAs. The expression of key genes related to the two hallmarks was upregulated in both EBV-infected cell lines and EBV-positive tumor tissues. These results suggest that SLC26A9 and TMC8 might be gene signatures that can effectively predict the prognosis of EBVaCAs and provide new insights into the molecular mechanisms of EBV-driven epithelial cancers.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.Y.); (H.I.)
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.Y.); (H.I.)
| | - Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (C.P.); (W.P.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-4336-3808; Fax:+66-4334-8385
| |
Collapse
|