1
|
Wang X, Yin QH, Wan LL, Sun RL, Wang G, Gu JF, Tang DC. Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:3410-3427. [PMID: 39171180 PMCID: PMC11334039 DOI: 10.4251/wjgo.v16.i8.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Pyroptosis is a type of programmed cell death mediated by gasdermines (GSDMs). The N-terminal domain of GSDMs forms pores in the plasma membrane, causing cell membrane rupture and the release of cell contents, leading to an inflammatory response and mediating pyrodeath. Pyroptosis plays an important role in inflammatory diseases and malignant tumors. With the further study of pyroptosis, an increasing number of studies have shown that the pyroptosis pathway can regulate the tumor microenvironment and antitumor immunity of colorectal cancer and is closely related to the occurrence, development, treatment and prognosis of colorectal cancer. This review aimed to explore the molecular mechanism of pyroptosis and the role of pyroptosis in the occurrence, development, treatment and prognosis of colorectal cancer (CRC) and to provide ideas for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qi-Hang Yin
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lin-Lu Wan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ruo-Lan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gang Wang
- Department of Ana and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Fei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - De-Cai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
2
|
Han Z, Luo W, Shen J, Xie F, Luo J, Yang X, Pang T, Lv Y, Li Y, Tang X, He J. Non-coding RNAs are involved in tumor cell death and affect tumorigenesis, progression, and treatment: a systematic review. Front Cell Dev Biol 2024; 12:1284934. [PMID: 38481525 PMCID: PMC10936223 DOI: 10.3389/fcell.2024.1284934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 11/02/2024] Open
Abstract
Cell death is ubiquitous during development and throughout life and is a genetically determined active and ordered process that plays a crucial role in regulating homeostasis. Cell death includes regulated cell death and non-programmed cell death, and the common types of regulatory cell death are necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. Apoptosis, Necrosis and necroptosis are more common than autophagy, ferroptosis and pyroptosis among cell death. Non-coding RNAs are regulatory RNA molecules that do not encode proteins and include mainly microRNAs, long non-coding RNAs, and circular RNAs. Non-coding RNAs can act as oncogenes and tumor suppressor genes, with significant effects on tumor occurrence and development, and they can also regulate tumor cell autophagy, ferroptosis, and pyroptosis at the transcriptional or post-transcriptional level. This paper reviews the recent research progress on the effects of the non-coding RNAs involved in autophagy, ferroptosis, and pyroptosis on tumorigenesis, tumor development, and treatment, and looks forward to the future direction of this field, which will help to elucidate the molecular mechanisms of tumorigenesis and tumor development, as well as provide a new vision for the treatment of tumors.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinggen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiang Yang
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ting Pang
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yubing Lv
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguang Li
- He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| |
Collapse
|
3
|
Hong Y, Xia Z, Sun Y, Lan Y, Di T, Yang J, Sun J, Qiu M, Luo Q, Yang D. A Comprehensive Pan-Cancer Analysis of the Regulation and Prognostic Effect of Coat Complex Subunit Zeta 1. Genes (Basel) 2023; 14:genes14040889. [PMID: 37107648 PMCID: PMC10137353 DOI: 10.3390/genes14040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The Coatomer protein complex Zeta 1 (COPZ1) has been reported to play an essential role in maintaining the survival of some types of tumors. In this study, we sought to explore the molecular characteristics of COPZ1 and its clinical prognostic value through a pan-cancers bioinformatic analysis. We found that COPZ1 was extremely prevalent in a variety of cancer types, and high expression of COPZ1 was linked to poor overall survival in many cancers, while low expression in LAML and PADC was correlated with tumorigenesis. Besides, the CRISPR Achilles' knockout analysis revealed that COPZ1 was vital for many tumor cells' survival. We further demonstrated that the high expression level of COPZ1 in tumors was regulated in multi-aspects, including abnormal CNV, DNA-methylation, transcription factor and microRNAs. As for the functional exploration of COPZ1, we found a positive relationship between COPZ1's expression and stemness and hypoxia signature, especially the contribution of COPZ1 on EMT ability in SARC. GSEA analysis revealed that COPZ1 was associated with many immune response pathways. Further investigation demonstrated that COPZ expression was negatively correlated with immune score and stromal score, and low expression of COPZ1 has been associated to more antitumor immune cell infiltration and pro-inflammatory cytokines. The further analysis of COPZ1 expression and anti-inflammatory M2 cells showed a consistent result. Finally, we verified the expression of COPZ1 in HCC cells, and proved its ability of sustaining tumor growth and invasion with biological experiments. Our study provides a multi-dimensional pan-cancer analysis of COPZ and demonstrates that COPZ1 can serve as both a prospective target for the treatment of cancer and a prognostic marker for a variety of cancer types.
Collapse
Affiliation(s)
- Ye Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zengfei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yuting Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yingxia Lan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jian Sun
- Department of Clinical Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510060, China
| | - Miaozhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiuyun Luo
- Department of Cancer Research, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China
| | - Dajun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
4
|
Construction and Validation of Pyroptosis-Related lncRNA Prediction Model for Colon Adenocarcinoma and Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:4492608. [PMID: 36168326 PMCID: PMC9509522 DOI: 10.1155/2022/4492608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Objective Colon adenocarcinoma (COAD) is one of the most prevalent cancers worldwide. However, the pyroptosis-related lncRNAs of COAD have not been deeply examined and validated. Here, we constructed and validated a risk model on pyroptosis-related lncRNAs in COAD. Methods The RNA sequencing transcriptome and clinical data of COAD patients were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed pyroptosis-related mRNAs and mRNA-lncRNA coexpression network were identified. After univariate and multifactorial cox analyses of prognosis-related lncRNAs, a risk model was constructed. Next, we analyzed the differences in immune infiltration, immune checkpoint blockade-, immune checkpoint-, and N6-methyladenosine-related gene expressions between the high- and low-risk groups. RT-qPCR was used to validate the expression of lncRNAs. Result A risk model was constructed based on 9 pyroptosis-related lncRNAs and separated COAD patients into the high- and low-risk groups. Immune infiltration analysis and immune checkpoint blockade-, immune checkpoint-, and N6-methyladenosine-related genes showed significant differences between the two subgroups. RT-qPCR showed that the 9 pyroptosis-related lncRNAs could be used as prognostic indicators. Conclusion A novel risk model based on pyroptosis-related lncRNAs was constructed and demonstrated that these lncRNAs might be used as independent prognostic biomarkers. This will also assist shed light on the COAD prognosis and therapy.
Collapse
|
5
|
Luo Q, Di T, Chen Z, Peng J, Sun J, Xia Z, Pan W, Luo F, Lu F, Sun Y, Yang L, Zhang L, Miao‐Zhen Q, Yang D. A novel prognostic model predicts overall survival in colon cancer based on
RNA
splicing regulation gene expression. Cancer Sci 2022; 113:3330-3346. [PMID: 35792657 PMCID: PMC9530871 DOI: 10.1111/cas.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Colon cancer is the third most common cancer and the second leading cause of cancer‐related death worldwide. Dysregulated RNA splicing factors have been reported to be associated with tumorigenesis and development in colon cancer. In this study, we interrogated clinical and RNA expression data of colon cancer patients from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) database. Genes regulating RNA splicing correlated with survival in colon cancer were identified and a risk score model was constructed using Cox regression analyses. In the risk model, RNA splicing factor peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PPARGC1) is correlated with a good survival outcome, whereas Cdc2‐like kinase 1(CLK1), CLK2, and A‐kinase anchor protein 8‐like (AKAP8L) with a bad survival outcome. The risk model has a good performance for clinical prognostic prediction both in the TCGA cohort and the other two validation cohorts. In the tumor microenvironment (TME) analysis, the immune score was higher in the low‐risk group, and TME‐related pathway gene expression was also higher in low‐risk group. We further verified the mRNA and protein expression levels of these four genes in the adjacent nontumor, tumor, and liver metastasis tissues of colon cancer patients, which were consistent with bioinformatics analysis. In addition, knockdown of AKAP8L can suppress the proliferation and migration of colon cancer cells. Animal studies have also shown that AKAP8L knockdown can inhibit tumor growth in colon cancer in vivo. We established a prognostic risk model for colon cancer based on genes related to RNA splicing regulation and uncovered the role of AKAP8L in promoting colon cancer progression.
Collapse
Affiliation(s)
- Qiu‐Yun Luo
- The Eighth Affiliated Hospital, Sun Yat‐sen University 518033 Shenzhen China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Zhi‐Gang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Medical Oncology, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Jian‐Hong Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Colorectal Surgery, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Clinical Research, The Third Affiliated Hospital 510060 Guangzhou China
| | - Zeng‐Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Wen‐Tao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Fan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Fei‐Teng Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Yu‐Ting Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Li‐Qiong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Clinical Laboratory, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Qiu Miao‐Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Medical Oncology, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Da‐Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| |
Collapse
|