1
|
Facundo AN, Magalhães M, Nascimento GC, Azulay RS, Santos RM, Freitas LA, Nascimento AGPAC, Rodrigues VP, Santos WC, Beckman AMGS, Abreu JMF, Silva RP, Carneiro EL, Oliveira Neto CP, Gil da Costa RM, Corcoy R, Mato E, Faria MS. The expression of VDACs and Bcl2 family genes in pituitary adenomas: clinical correlations and postsurgical outcomes. Front Endocrinol (Lausanne) 2024; 15:1481050. [PMID: 39449743 PMCID: PMC11499145 DOI: 10.3389/fendo.2024.1481050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Pituitary adenomas (PAs) are benign tumors with high prevalence and, occasionally, aggressive course. The tumorigenesis of these lesions is not completely understood at the molecular level. BAK1 and BAX proteins play fundamental roles in apoptosis and seem to interact with VDAC proteins, whose expressions have been markedly altered in cancer, impacting their prognosis. Objective to evaluate the gene expression of VDAC1, VDAC2, BAK1 and BAX and their association with clinical and imaging characteristics in PA. Methods Clinical-epidemiological data were collected from 117 tumor samples from patients affected by PA. Invasiveness was assessed by the Knosp scale. Gene expression was examined by real-time PCR. Relative expression analysis was performed by 2^(-DDCt) method. Results The sample was mainly composed of women (69/117 - 57.2%). Tumor subtypes observed were Non-Functioning (NF) (73/117 - 62.4%), Acromegaly (24/117 - 20.5%) and Cushing's Disease (CD) (20/117 - 17.1%). Compared to normal tissue, there was a significant reduction in VDAC1 expression in the Acromegaly (p=0.029) and NF (p=0.002) groups. BAX expression was lower in all groups (p <0.001; p=0.007; P =0.005). No difference was found in VDAC2 and BAK1 expression, compared to normal pituitary. Overexpression of VDAC2 occurred in PAs with post-surgical regrowth (p=0.042). A strongly negative correlation was observed in BAX and BAK1 expression in CD. Conclusion The results indicated that downregulations of VDAC1 and BAX may be related to resistance to apoptosis. In contrast, overexpression of VDAC2 in regrowing PAs suggests an antiapoptotic role for this gene. In summary, the genes evaluated might be involved in the biopathology of PAs.
Collapse
Affiliation(s)
- AN Facundo
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis, Brazil
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - M Magalhães
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - GC Nascimento
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - RS Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - RM Santos
- Service of Radiology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
| | - LA Freitas
- Service of Radiology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
| | - AGPAC Nascimento
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
- Service of Pathology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
| | - VP Rodrigues
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
- Department of Morphology, Federal University of Maranhao (UFMA), São Luis, Brazil
| | - WC Santos
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - AMGS Beckman
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - JMF Abreu
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - RP Silva
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - EL Carneiro
- Service of Neurosurgery, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
| | - CP Oliveira Neto
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| | - RM Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
- Department of Morphology, Federal University of Maranhao (UFMA), São Luis, Brazil
| | - R Corcoy
- CIBER Bioengineering, Biomaterials and Nanotechnology (CIBER-BBN), Instituto de Salud III, Madrid, Spain
- Department of Nutricion and Endocrinology of Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - E Mato
- CIBER Bioengineering, Biomaterials and Nanotechnology (CIBER-BBN), Instituto de Salud III, Madrid, Spain
- Department of Nutricion and Endocrinology of Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - MS Faria
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis, Brazil
- Service of Endocrinology, University Hospital of the Federal University of Maranhao (HUUFMA), São Luis, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), Federal University of Maranhão (UFMA), São Luis, Brazil
| |
Collapse
|
2
|
Fang Y, Zhang Q, Guo C, Zheng R, Liu B, Zhang Y, Wu J. Mitochondrial-related genes as prognostic and metastatic markers in breast cancer: insights from comprehensive analysis and clinical models. Front Immunol 2024; 15:1461489. [PMID: 39380996 PMCID: PMC11458410 DOI: 10.3389/fimmu.2024.1461489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Breast cancer (BC) constitutes a significant peril to global women's health. Contemporary research progressively suggests that mitochondrial dysfunction plays a pivotal role in both the inception and advancement of BC. However, investigations delving into the correlation between mitochondrial-related genes (MRGs) and the prognosis and metastasis of BC are still infrequent. Methods Utilizing data from the TCGA database, we employed the "limma" R package for differential expression analysis. Subsequently, both univariate and multivariate Cox regression analyses were executed, alongside LASSO Cox regression analysis, to pinpoint prognostic MRGs and to further develop the prognostic model. External validation (GSE88770 merged GSE425680) and internal validation were further conducted. Our investigation delved into a broad spectrum of analyses that included functional enrichment, metabolic and immune characteristics, immunotherapy response prediction, intratumor heterogeneity (ITH), mutation, tumor mutational burden (TMB), microsatellite instability (MSI), cellular stemness, single-cell, and drug sensitivity analysis. We validated the protein and mRNA expressions of prognostic MRGs in tissues and cell lines through immunohistochemistry and qRT-PCR. Moreover, leveraging the GSE102484 dataset, we conducted differential gene expression analysis to identify MRGs related to metastasis, subsequently developing metastasis models via 10 distinct machine-learning algorithms and then selecting the best-performing model. The division between training and validation cohorts was set at 70% and 30%, respectively. Results A prognostic model was constructed by 9 prognostic MRGs, which were DCTPP1, FEZ1, KMO, NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2. Patients within the high-risk group experienced more adverse outcomes than their counterparts in the low-risk group. The ROC curves and constructed nomogram showed that the model exhibited an excellent ability to predict overall survival (OS) for patients and the risk score was identified as an independent prognostic factor. The functional enrichment analysis showed a strong correlation between metabolic progression and MRGs. Additional research revealed that the discrepancies in outcomes between the two risk categories may be attributed to a variety of metabolic and immune characteristics, as well as differences in intratumor heterogeneity (ITH), tumor mutational burden (TMB), and cancer stemness indices. ITH, TIDE, and IPS analyses suggested that patients possessing a low-risk score may exhibit enhanced responsiveness to immunotherapy. Additionally, distant metastasis models were established by PDK4, NRF1, DCAF8, CHPT1, MARS2 and NAMPT. Among these, the XGBoost model showed the best predicting ability. Conclusion In conclusion, MRGs significantly influence the prognosis and metastasis of BC. The development of dual clinical prediction models offers crucial insights for tailored and precise therapeutic strategies, and paves the way for exploring new avenues in understanding the pathogenesis of BC.
Collapse
Affiliation(s)
- Yutong Fang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- Department of Breast Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Cuiping Guo
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Liu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongqu Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
4
|
Guo L, Ma X, Li H, Yan S, Zhang K, Li J. Single‑cell RNA‑seq necroptosis‑related genes predict the prognosis of breast cancer and affect the differentiation of CD4 + T cells in tumor immune microenvironment. Mol Clin Oncol 2024; 21:49. [PMID: 38872949 PMCID: PMC11170320 DOI: 10.3892/mco.2024.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of malignancy and a major cause of cancer-related death. The purpose of the present study was to identify prognostic models of necroptosis-related genes (NRGs) in BC at the single-cell RNA-sequencing level and reveal the role of NRGs in tumour immune microenvironment (TIME). A risk model was constructed based on Cox regression and LASSO methods. Next, high-scoring cell populations were searched through AUCell scores, and cell subtypes were then analyzed by pseudotime analysis. Finally, the expression level of the model genes was verified by reverse transcription-quantitative (RT-qPCR). A new prognostic model was constructed and validated based on five NRGs (BCL2, BIRC3, AIFM1, IFNG and VDAC1), which could effectively predict the prognosis of patients with BC. NRGs were found to be highly active in CD4+ T cells and differentially expressed in their developmental trajectories. Finally, the RT-qPCR results showed that most of the model genes were significantly overexpressed in MDA-MB-231 and MCF-7 cells (P<0.05). In conclusion, an NRG signature with excellent predictive properties in prognosis and TIME was successfully established. Moreover, NRGs were involved in the differentiation and development of CD4+ T cells in TIME. These findings provide potential therapeutic strategies for BC.
Collapse
Affiliation(s)
- Li Guo
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Xiuzhen Ma
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuxun Yan
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Kai Zhang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750003, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
5
|
Conti Nibali S, De Siervi S, Luchinat E, Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Mondelli MU, De Pinto V, Turato C, Arrigoni C, Lolicato M. VDAC1-interacting molecules promote cell death in cancer organoids through mitochondrial-dependent metabolic interference. iScience 2024; 27:109853. [PMID: 38784007 PMCID: PMC11112339 DOI: 10.1016/j.isci.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.
Collapse
Affiliation(s)
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enrico Luchinat
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Firenze, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U. Mondelli
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, Section of Biology & Genetics, University of Catania, Catania, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Belosludtseva NV, Dubinin MV, Belosludtsev KN. Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1061-1078. [PMID: 38981701 DOI: 10.1134/s0006297924060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.
Collapse
Affiliation(s)
- Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Mari State University, Yoshkar-Ola, Mari El, 424001, Russia
| | | | | |
Collapse
|
7
|
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024; 15:3178. [PMID: 38609378 PMCID: PMC11015024 DOI: 10.1038/s41467-024-47433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Fang Y, Zhang Q, Wu Y, Wu J. HER2-positive is an independent indicator for predicting pathological complete response to neoadjuvant therapy and Ki67-changed after neoadjuvant chemotherapy predicts favorable prognosis in Chinese women with locally advanced breast cancer. Medicine (Baltimore) 2024; 103:e37170. [PMID: 38335419 PMCID: PMC10860946 DOI: 10.1097/md.0000000000037170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The growing body of evidence suggests that breast cancer (BC) who achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) may experience a more favorable prognosis. The objective of this study is to investigate the correlation between clinicopathologic parameters of locally advanced breast cancer (LABC) patients and the outcomes of NAC, with the aim of identifying predictive indicators for pCR. Additionally, we seek to examine the conversion of IHC markers in pCR patients following NAC and its impact on the prognosis of BC patients. We conducted a study involving 126 patients with LABC. Clinicopathological parameters associated with pCR were subjected to univariate and multivariate analysis. Kaplan-Meier (KM) curves and the log-rank test were used to compare the statistical difference in prognosis in different groups of patients. Additionally, we used difference and consistency tests to examine the conversion of immunohistochemistry (IHC) markers following NAC. The status of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and molecular subtypes of BC were associated with pCR in the univariate analysis (all P < .05), which may be potential markers to predict pCR. HER2 was identified as an independent factor for predicting pCR in the multivariate analysis. The pCR rate of HER2-positive patients who received NAC combined targeted therapy was higher than that of patients who only received NAC (P = .003). The disease-free survival (DFS) rate of TNBC patients who achieved pCR was significantly higher than that of non-pCR TNBC patients (P = .026). The IHC marker conversion after NAC mainly existed in PR (P = .041). Ki67 expression decreased in the luminal B subtype and increased in the HER2 enriched subtype after NAC (all P < .001). Patients with Ki67 expression change after NAC had longer overall survival (OS) and DFS than unchanged patients (all P < .05). HER2-positive is an independent indicator for predicting pCR, and HE2-positive patients who received NAC combined targeted therapy were favorable to achieving pCR. IHC markers of BC patients exhibit varying degrees of alterations after NAC, and changes in Ki67 expression after NAC could serve as a marker to predict a better prognosis.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qunchen Zhang
- The Department of Breast, Jiangmen Central Hospital, Jiangmen, China
| | - Yuan Wu
- Department of Breast Surgery, Meizhou People’s Hospital, Meizhou, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
9
|
An G, Park J, Song J, Hong T, Song G, Lim W. Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med 2024; 56:40-50. [PMID: 38172597 PMCID: PMC10834980 DOI: 10.1038/s12276-023-01137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum (ER)-mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis, alterations in the ER-mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities. Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic strategies that target MAM proteins in various cancer types.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhang N, Wang F, Yang X, Wang Q, Chang R, Zhu L, Feitelson MA, Chen Z. TMEM43 promotes the development of hepatocellular carcinoma by activating VDAC1 through USP7 deubiquitination. Transl Gastroenterol Hepatol 2024; 9:9. [PMID: 38317750 PMCID: PMC10838614 DOI: 10.21037/tgh-23-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Background Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 in cancer remains unclear. Methods We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases to explore and identify genes that may play an important role in the occurrence and development of hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43. Results In this study, we utilized the RNA-seq and TGCA databases to mine data and found that TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit tumor development. Further research detected an important regulatory relationship between TMEM43 and VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination level of TMEM43 through deubiquitination. Conclusions Our study demonstrated that USP7 participates in the growth of HCC tumors through TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and represent a new treatment strategy for HCC.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Xiaobing Yang
- Department of General Surgery, Huai’an Hospital of Huai’an City, Huai’an, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Renan Chang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Mark A. Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| |
Collapse
|
11
|
Xiao H, Ma L, Ding J, Wang H, Bi X, Tan F, Piao W. Mitochondrial Calcium Uniporter (MCU) that Modulates Mitochondrial Calcium Uptake and Facilitates Endometrial Cancer Progression through Interaction with VDAC1. Curr Cancer Drug Targets 2024; 24:354-367. [PMID: 37702230 DOI: 10.2174/1568009624666230912095526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Although endometrial cancer represents a frequently diagnosed malignancy of the female reproductive tract, we know very little about the factors that control endometrial cancer. OBJECTIVE Our study was presented to investigate the function of MCU in endometrial tumorigenesis and the molecular mechanisms involved. MATERIALS AND METHODS A total of 94 endometrial cancer patients were recruited into our cohort. MCU and VDAC1 expression was examined in tumor and normal tissues via immunohistochemistry and immunofluorescence. Associations of MCU and VDAC1 expression with clinicopathological characteristics were evaluated. After transfection with shRNA targeting MCU or full-length MCU plasmids, clone formation, wound healing, transwell and MitoTracker Red staining were separately presented in Ishikawa and RL95-2 cells. Moreover, Western blotting or immunofluorescence was utilized to examine the expression of MCU, VDAC1, Na+/Ca2+/Li+ exchanger (NCLX), and β-catenin under VDAC1 knockdown and/or MCU overexpression or knockdown. RESULTS MCU and VDAC1 expression were prominently up-regulated in endometrial cancer tissues and were significantly associated with histological grade, depth of myometrial invasion and lymph node status. MCU up-regulation enhanced clone formation, migration, and mitochondrial activity of endometrial cancer cells. The opposite results were investigated when MCU was silenced. MCU or VDAC1 silencing reduced the expression of MCU, VDAC1, NCLX, and β-catenin. Moreover, VDAC1 knockdown alleviated the promoting effect of MCU overexpression on the above proteins. CONCLUSION This investigation demonstrated that MCU-induced mitochondrial calcium uptake plays a critical role in endometrial tumorigenesis through interaction with VDAC1.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Lijun Ma
- School of Electrical and Information Engineering, Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Jie Ding
- Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Honghong Wang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Xiaofang Bi
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Fengmei Tan
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Wenhua Piao
- Clinical Medical Laboratory Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
12
|
Wu L, Chen H, Yang C. Origin recognition complex subunit 1(ORC1) is a potential biomarker and therapeutic target in cancer. BMC Med Genomics 2023; 16:243. [PMID: 37833711 PMCID: PMC10571394 DOI: 10.1186/s12920-023-01691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin recognition complex 1 (ORC1) is a large subunit of the origin recognition complex and acts as the master subunit of the precoding complex. OBJECTIVE To explore potential function and clinical significance of ORC1 in cancers. METHODS The expression level of ORC1 in different types of tumor tissues and matched normal tissues were detected by The Cancer Genome Atlas (TCGA) and validated by datasets from the gene expression omnibus (GEO) database. The association between ORC1 expression and infiltration levels of immune cell was analyzed. ORC1 and its co-expression genes were subjected to enrichment analysis to explore potential mechanisms in cancers, and the protein-protein interaction (PPI) network was constructed. Finally, the expression of ORC1 in tumor tissue and adjacent tissue was verified by immunohistochemistry (IHC). RESULTS ORC1 was highly expressed in the majority of tumors, and the expression level of ORC1 was associated with the pathological stages of ACC, LUAD, OV and SKCM. ORC1 was closely related with poor prognosis in ACC, LIHC, PAAD, READ and THCA. ORC1 in ACC and KICH was positively correlated with the infiltration level of immune cells while it was negatively correlated with the infiltration level of immune cells in THYM. Co-expression network analysis showed that CDCA3, GSG2, KIF2C, NCAPH and PLK1 were positively correlated with ORC1 in cancer, and enrichment analysis showed a correlation with cytosol, ATP binding and cell division. The expression of ORC1 in UCEC and KICH was higher than that in the adjacent tissues. CONCLUSION ORC1 over-expressed in most tumors and could be severed as a novel biomarker for diagnosis. This study revealed that ORC1 might inhibit tumor immunity and might be a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Linling Wu
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hui Chen
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of life science, Gannan Normal University, Ganzhou, 341000, China
| | - Chao Yang
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
- College of life science, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
13
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
14
|
Allon I, Pettesh J, Livoff A, Schlapobersky M, Nahlieli O, Michaeli E. Voltage-Dependent Anion Channel 1 Expression in Oral Malignant and Premalignant Lesions. Diagnostics (Basel) 2023; 13:diagnostics13071225. [PMID: 37046443 PMCID: PMC10093190 DOI: 10.3390/diagnostics13071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The voltage-dependent anion channel 1 protein (VDAC1) plays a role in cellular metabolism and survival. It was found to be down or upregulated (overexpressed) in different malignancies but it was never studied in application to oral lesions. The purpose of this study was to retrospectively evaluate the expression of VDAC1 in biopsies of oral premalignant, malignant, and malignancy-neutral lesions and to examine the possible correlations to their clinicopathological parameters. MATERIALS AND METHODS 103 biopsies including 49 oral squamous cell carcinoma, 33 epithelial dysplasia, and 21 fibrous hyperplasia samples were immunohistochemically stained with anti-VDAC1 antibodies for semi-quantitative evaluation. The antibody detection was performed with 3,3'-diaminobenzidine (DAB). The clinicopathological information was examined for possible correlations with VDAC1. RESULTS VDAC1 expression was lower in oral squamous cell carcinoma 0.63 ± 0.40 and in oral epithelial dysplasia 0.61 ± 0.36 biopsies compared to fibrous hyperplasia biopsies 1.45 ± 0.28 (p < 0.01 for both; Kruskal-Wallis test). CONCLUSION Oral squamous cell carcinoma and epithelial dysplasia tissues demonstrated decreased VDAC1 protein expression if compared to fibrous hyperplasia samples, but were not different from each other, suggesting that the involvement of VDAC1 in oral carcinogenesis is an early stage event, regulating cells to live or die.
Collapse
Affiliation(s)
- Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| | - Jacob Pettesh
- Oral Medicine Unit, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Alejandro Livoff
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Mark Schlapobersky
- Institute of Pathology, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Oded Nahlieli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
- Department of Oral & Maxillofacial Surgery, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Eli Michaeli
- School of Health Sciences, The Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel
| |
Collapse
|
15
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|