1
|
Liu Y, Xu B, Fan C. Single-Cell RNA Sequencing and Microarray Analysis Reveal the Role of Lipid-Metabolism-Related Genes and Cellular Immune Infiltration in Pre-Eclampsia and Identify Novel Biomarkers for Pre-Eclampsia. Biomedicines 2023; 11:2328. [PMID: 37626824 PMCID: PMC10452287 DOI: 10.3390/biomedicines11082328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Pre-eclampsia (PE) is a gestational hypertensive disorder that is characterized by hypertension and proteinuria, typically occurring after 20 weeks of gestation. Despite its global impact on pregnant women, the precise pathogenic mechanisms of PE remain unclear. Dysregulated lipid metabolism and immune cell infiltration contribute to PE development. Our study aimed to identify lipid-metabolism-related genes (LMRG-PEs) and investigate their association with immune infiltration. We utilized the "Seurat" R package for data quality control, cell clustering, and marker gene identification. The "SingleR" package enabled the matching of marker genes to specific cell types. Pseudotemporal ordering analysis was conducted using the "Monocle" package. Weighted correlation network analysis (WGCNA), gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA) approaches were employed to explore lipid-metabolism-related genes, while potential targeted drugs were predicted using the drug-gene interaction database (DGIdb). Hub gene expression was validated through RT-qPCR. By analyzing single-cell RNA sequencing data, we identified and classified 20 cell clusters into 5 distinct types. Differential gene expression analysis revealed 186 DEGs. WGCNA identified 9 critical modules and 265 genes significantly associated with PE diagnosis, emphasizing the importance of the core genes PLA2G7 and PTGS2. RT-qPCR confirmed the significantly decreased expression of PLA2G7 and PTGS2 in PE patient tissues. These findings offer valuable insights into the molecular mechanisms of PE, particularly those involving lipid metabolism and immune infiltration. The identified hub genes have potential as therapeutic targets and biomarkers for future research and clinical applications.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Borui Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
2
|
Yang Y, Wu L, Lv Y, Miao Z, Wang Y, Yan J, Li J, Li C, Ding H. LC-MS/MS based untargeted lipidomics uncovers lipid signatures of late-onset preeclampsia. Biochimie 2022; 208:46-55. [DOI: 10.1016/j.biochi.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
|
3
|
Berger N, Allerkamp H, Wadsack C. Serine Hydrolases in Lipid Homeostasis of the Placenta-Targets for Placental Function? Int J Mol Sci 2022; 23:6851. [PMID: 35743292 PMCID: PMC9223866 DOI: 10.3390/ijms23126851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Hanna Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
- BioTechMed-Graz, 8036 Graz, Austria
| |
Collapse
|
4
|
Abascal-Saiz A, Duque-Alcorta M, Fioravantti V, Antolín E, Fuente-Luelmo E, Haro M, Ramos-Álvarez MP, Perdomo G, Bartha JL. The Relationship between Angiogenic Factors and Energy Metabolism in Preeclampsia. Nutrients 2022; 14:2172. [PMID: 35631313 PMCID: PMC9145768 DOI: 10.3390/nu14102172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Antiangiogenic factors are currently used for the prediction of preeclampsia. The present study aimed to evaluate the relationship between antiangiogenic factors and lipid and carbohydrate metabolism in maternal plasma and placenta. We analyzed 56 pregnant women, 30 healthy and 26 with preeclampsia (including early and late onset). We compared antiangiogenic factors soluble Fms-like Tyrosine Kinase-1 (sfLt-1), placental growth factor (PlGF), and soluble endoglin (sEng)), lipid and carbohydrate metabolism in maternal plasma, and lipid metabolism in the placenta from assays of fatty acid oxidation, fatty acid esterification, and triglyceride levels in all groups. Antiangiogenic factors sFlt-1, sFlt-1/PlGF ratio, and sEng showed a positive correlation with triglyceride, free fatty acid, and C-peptide maternal serum levels. However, there was no relationship between angiogenic factors and placental lipid metabolism parameters. Free fatty acids were predictive of elevated sFlt-1 and sEng, while C-peptide was predictive of an elevated sFlt1/PlGF ratio. The findings in this study generate a model to predict elevated antiangiogenic factor values and the relationship between them with different products of lipid and carbohydrate metabolism in maternal serum and placenta in preeclampsia.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - Marta Duque-Alcorta
- Department of Clinical Chemistry, La Paz University Hospital, 28046 Madrid, Spain;
| | - Victoria Fioravantti
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesus, 28009 Madrid, Spain;
| | - Eugenia Antolín
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - María P. Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, 28668 Madrid, Spain; (E.F.-L.); (M.H.); (M.P.R.-Á.)
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, 47003 Valladolid, Spain;
| | - José L. Bartha
- Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.A.-S.); (E.A.)
| |
Collapse
|
5
|
Cheng JC, Fang L, Li Y, Thakur A, Hoodless PA, Guo Y, Wang Z, Wu Z, Yan Y, Jia Q, Gao Y, Han X, Yu Y, Sun YP. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 2021; 4:1285. [PMID: 34773076 PMCID: PMC8589964 DOI: 10.1038/s42003-021-02816-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression. Cheng, Fan, Li et al. identified ANGPTL4 as a G1-induced target gene of GPER/YAP in HRT8 cells using RNA-seq and highlighted its importance in regulating trophoblast cell invasion. The authors also reported GPER downregulation in the placenta and lower estradiol levels in patients who developed preeclampsia.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
6
|
Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021; 13:nu13041244. [PMID: 33918804 PMCID: PMC8069164 DOI: 10.3390/nu13041244] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.
Collapse
|
7
|
Abstract
OBJECTIVES The current study examines the placental and maternal lipid profile and expression of genes involved in placental lipid metabolism in women with preeclampsia. METHODS The current study includes normotensive control women (n = 40) and women with preeclampsia (n = 39). Preeclampsia women were further classified into women delivering at term preeclampsia (T-PE; n = 15) and preterm preeclampsia (PT-PE; n = 24). RESULTS There were no significant differences in maternal lipid profile between the T-PE and normotensive control groups. Maternal plasma VLDL (P < 0.05) and ratios of total cholesterol : HDL (P < 0.05), atherogenic index [log (triglycerides/HDL)] (P < 0.01) and apolipoprotein B : apolipoprotein A (P < 0.05) were higher in the PT-PE group as compared with the normotensive control group. Placental total cholesterol and HDL levels were higher (P < 0.05) in the T-PE as compared with the normotensive control group. Higher placental triglycerides (P < 0.05) were observed in PT-PE group compared with T-PE group. Placental mRNA levels of peroxisome proliferator activated receptor α, carnitine palmitoyl transferase-1, cluster of differentiation 36 and lipoprotein lipases were lower (P < 0.05) in the PT-PE than normotensive control group. A negative association of mRNA levels of peroxisome proliferator activated receptor α (r = -0.246, P = 0.032; r = -0.308, P = 0.007, respectively), carnitine palmitoyl transferase-1 (r = -0.292, P = 0.011; r = -0.366, P = 0.001), lipoprotein lipases (r = -0.296, P = 0.010; r = -0.254, P = 0.028) with SBP and DBP was observed. There was a positive association of placental triglycerides (r = 0.244, P = 0.031) with DBP. CONCLUSION Women with preeclampsia exhibit higher lipid : lipoprotein ratios suggesting an atherogenic state particularly in women delivering preterm. Lower expression of genes involved in placental fatty acid oxidation and transport was also observed in preeclampsia.
Collapse
Affiliation(s)
- Amrita A Khaire
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University)
| | - Shivani R Thakar
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University)
| | - Girija N Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University)
| |
Collapse
|
8
|
Hong C, Deng R, Wang P, Lu X, Zhao X, Wang X, Cai R, Lin J. LIPG: an inflammation and cancer modulator. Cancer Gene Ther 2020; 28:27-32. [PMID: 32572177 DOI: 10.1038/s41417-020-0188-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Endothelial lipase (LIPG/EL) performs fundamental and vital roles in the human body, including cell composition, cytokine expression, and energy provision. Since LIPG predominantly functions as a phospholipase as well as presents low levels of triglyceride lipase activity, it plays an essential role in lipoprotein metabolism, and involves in the metabolic syndromes such as inflammatory response and atherosclerosis. Cytokines significantly affect LIPG expression in endothelial cells in many diseases. Recently, it is suggested that LIPG contributes to cancer initiation and progression, and LIPG attached increasing importance to its potential for future targeted therapy.
Collapse
Affiliation(s)
- Chang Hong
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Ruxia Deng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiansheng Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Zhao
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaoyu Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
9
|
Gagné-Ouellet V, Houde AA, Guay SP, Perron P, Gaudet D, Guérin R, Jean-Patrice B, Hivert MF, Brisson D, Bouchard L. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics 2017; 12:616-625. [PMID: 28486003 DOI: 10.1080/15592294.2017.1322254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with obesity in childhood. This suggests that consequences of in utero exposure to maternal hyperglycemia extend beyond the fetal development, possibly through epigenetic programming. The aims of this study were to assess whether placental DNA methylation (DNAm) marks were associated with maternal GDM status and to offspring body composition at 5 years old in a prospective birth cohort. DNAm levels were measured in the fetal side of the placenta in 66 samples (24 from GDM mothers) using bisDNA-pyrosequencing. Anthropometric and body composition (bioimpedance) were measured in children at 5 years of age. Mann-Whitney and Spearman tests were used to assess associations between GDM, placental DNAm levels at the lipoprotein lipase (LPL) locus and children's weight, height, body mass index (BMI), body fat, and lean masses at 5 years of age. Weight, height, and BMI z-scores were computed according to the World Health Organization growth chart. Analyses were adjusted for gestational age at birth, child sex, maternal age, and pre-pregnancy BMI. LPL DNAm levels were positively correlated with birth weight z-scores (r = 0.252, P = 0.04), and with mid-childhood weight z-scores (r = 0.314, P = 0.01) and fat mass (r = 0.275, P = 0.04), and negatively correlated with lean mass (r = -0.306, P = 0.02). We found a negative correlation between LPL DNAm and mRNA levels in placenta (r = -0.459; P < 0.001), which highlights the regulation of transcriptional activity by these epivariations. We demonstrated that alterations in fetal placental DNAm levels at the LPL gene locus are associated with the anthropometric profile in children at 5 years of age. These findings support the concept of fetal metabolic programming through epigenetic changes.
Collapse
Affiliation(s)
- Valérie Gagné-Ouellet
- a Department of Biochemistry , Université de Sherbrooke , Sherbrooke , QC , Canada.,b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada
| | - Andrée-Anne Houde
- c Department of Medicine , Université de Montréal , Montréal , QC , Canada
| | - Simon-Pierre Guay
- a Department of Biochemistry , Université de Sherbrooke , Sherbrooke , QC , Canada.,b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada.,e Department of Medicine , Université de Sherbrooke , Sherbrooke , QC , Canada
| | - Patrice Perron
- b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada.,e Department of Medicine , Université de Sherbrooke , Sherbrooke , QC , Canada
| | - Daniel Gaudet
- b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada.,f Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine , Université de Montréal Community Gene Medicine Center, Chicoutimi Department of Medicine, Université de Montréal , Montréal , QC , Canada
| | - Renée Guérin
- d Department of Medical Biology , CIUSSS Saguenay-Lac-Saint-Jean - Chicoutimi Hospital , Saguenay , QC , Canada
| | | | - Marie-France Hivert
- e Department of Medicine , Université de Sherbrooke , Sherbrooke , QC , Canada.,g Department of Population Medicine , Harvard Pilgrim Health Care Institute, Harvard Medical School , Boston , MA , USA
| | - Diane Brisson
- b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada.,f Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine , Université de Montréal Community Gene Medicine Center, Chicoutimi Department of Medicine, Université de Montréal , Montréal , QC , Canada
| | - Luigi Bouchard
- a Department of Biochemistry , Université de Sherbrooke , Sherbrooke , QC , Canada.,b ECOGENE-21 Biocluster , Chicoutimi , Quebec , Canada , QC , Canada.,d Department of Medical Biology , CIUSSS Saguenay-Lac-Saint-Jean - Chicoutimi Hospital , Saguenay , QC , Canada
| |
Collapse
|
10
|
Lipoprotein lipase and lipid profiles in plasma and placenta from normal pregnancies compared with patients with intrahepatic cholestasis of pregnancy. Eur J Obstet Gynecol Reprod Biol 2016; 203:279-85. [PMID: 27400425 DOI: 10.1016/j.ejogrb.2016.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To analyse lipoprotein lipase (LPL) expression and lipid levels in placenta and plasma of patients with intrahepatic cholestasis of pregnancy (ICP) and normal pregnancies. METHODS This prospective study included 30 patients with ICP and 30 gestational-age-matched pregnancies without any complications. Enzyme-linked immunosorbent assays were used to investigate plasma LPL levels from 28 weeks of gestation, at 4-weekly intervals, to 38 weeks of gestation, and data were assessed longitudinally. Immunohistochemistry, Western blotting and real-time polymerase chain reaction were used to detect placental LPL expression and activity. Placental triglyceride and total cholesterol levels were also analysed. The clinical data related to ICP and lipid profiles were collected retrospectively. RESULTS Plasma LPL concentration increased with gestational age in both groups, but the increase was limited in the ICP group. Immunohistochemistry revealed LPL staining mainly in syncytiotrophoblasts, and 3,3'-diamino-benzidine tetrahydrochloride wt% was lower in ICP placenta compared with normal placenta (p<0.01). LPL protein and mRNA expression in ICP placenta were significantly lower than in normal placenta (p<0.01). LPL activity was not significantly different in both groups. Correlation analysis indicated that the plasma LPL level was negatively associated with the corresponding concentration of total bile acid (r=-0.57) in the ICP group. CONCLUSION Reduced LPL expression in placenta, limited increase in LPL level in maternal plasma, and abnormal lipid profiles were found in patients with ICP. LPL was possibly related to ICP by participating abnormal lipid metabolism.
Collapse
|