1
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying and nesting period. Front Genet 2023; 14:1222087. [PMID: 37876591 PMCID: PMC10591096 DOI: 10.3389/fgene.2023.1222087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The poor reproductive performance of most local Chinese chickens limits the economic benefits and output of related enterprises. As an excellent local breed in China, Taihe black-bone silky fowl is in urgent need of our development and utilization. In this study, we performed transcriptomic and metabolomic analyses of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP) and nesting period (NP) to reveal the molecular mechanisms affecting reproductive performance. In the transcriptome, we identified five key differentially expressed genes (DEGs) that may affect the reproductive performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN, as well as three important pathways: the extracellular region, Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the metabolome, we predicted three important ovarian significantly differential metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration analysis of transcriptome and metabolome, we identified three important metabolite-gene pairs: "LPC 20:4-BCHE", "Bisphenol A-SMOC1", and "Cortisol- SCIN". In summary, this study contributes to a deeper understanding of the regulatory mechanism of egg production in Taihe black-bone silky fowl and provides a scientific basis for improving the reproductive performance of Chinese local chickens.
Collapse
Affiliation(s)
- Xin Xiang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Xuan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | | | - Haiyang Zhang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Chunhui Xu
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Yuting Tan
- Animal Science College, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Bastos DCDS, Chiamolera MI, Silva RE, Souza MDCBD, Antunes RA, Souza MM, Mancebo ACA, Arêas PCF, Reis FM, Lo Turco EG, Bloise FF, Ortiga-Carvalho TM. Metabolomic analysis of follicular fluid from women with Hashimoto thyroiditis. Sci Rep 2023; 13:12497. [PMID: 37532758 PMCID: PMC10397241 DOI: 10.1038/s41598-023-39514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Hashimoto thyroiditis is an autoimmune disease characterized by hypothyroidism and a high level of anti-thyroid autoantibodies. It has shown to negatively impact female fertility; however, the mechanisms are unclear. Ovarian follicular fluid appears to be the key to understanding how Hashimoto thyroiditis affecst fertility. Thus, we aimed to evaluated the metabolic profile of follicular fluid and antithyroid autoantibody levels in the context of Hashimoto thyroiditis. We collected follicular fluid from 61 patients, namely 38 women with thyroid autoantibody positivity and 23 women as negative controls, undergoing in vitro fertilization treatment. Follicular fluid samples were analyzed using metabolomics, and thyroid autoantibodies were measured. Fifteen metabolites with higher concentrations in the follicular fluid samples from Hashimoto thyroiditis were identified, comprising five possible affected pathways: the glycerophospholipid, arachidonic acid, linoleic acid, alpha-linolenic acid, and sphingolipid metabolism pathways. These pathways are known to regulate ovarian functions. In addition, antithyroglobulin antibody concentrations in both serum and follicular fluid were more than tenfold higher in women with Hashimoto thyroiditis than in controls. Our data showed that the metabolic profile of follicular fluid is altered in women with Hashimoto thyroiditis, suggesting a potential mechanistic explanation for the association of this disease with female infertility.
Collapse
Affiliation(s)
- Diana Caroline da Silva Bastos
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maria Izabel Chiamolera
- Laboratório de Endocrinologia Molecular e Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Renata Elen Silva
- Laboratório de Endocrinologia Molecular e Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Roberto Azevedo Antunes
- Fertipraxis Centro de Reproducao Humana, Rio de Janeiro, Brasil
- Maternidade Escola, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | - Fernando M Reis
- Departamento de Ginecologia e Obstetrícia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Edson Guimarães Lo Turco
- Ion Medicine, São Paulo, Brasil
- Departamento de Cirurgia, Disciplina de Urologia, Setor de Reprodução Assistida Universidade Federal de São Paulo, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Flavia Fonseca Bloise
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Tania M Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
4
|
Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, Chen M, Qian Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol 2022; 5:763. [PMID: 35906399 PMCID: PMC9334733 DOI: 10.1038/s42003-022-03710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
In order to investigate the metabolic characteristics of human follicular fluid (FF) and to reveal potential metabolic predictors of follicular development (FD) with clinical implications, we analyzed a total of 452 samples based on a two-stage study design. In the first stage, FF samples from both large follicles (LFs) and matched-small follicles (SFs) of 26 participants were analyzed with wide-spectrum targeted metabolomics. The metabolic signatures were described by multi-omics integration technology including metabolomic data and transcriptomic data. In the second stage, the potential biomarkers of FD were verified using enzyme-linked immunoassay with FF and blood serum from an independent 200 participants. We describe the FF metabolic signatures from ovarian follicles of different developmental stages. Lysophosphatidylcholine (LPC) can be used as a biomarker of FD and ovarian sensitivity, advancing the knowledge of metabolic regulation during FD and offering potential detection and therapeutic targets for follicle and oocyte health improvements in humans. A two-stage metabolomic analysis for human follicular fluid characteristics and predictors of follicular development yields metabolic signatures and proposes lysophosphatidylcholine (LPC) as a biomarker for follicular development.
Collapse
Affiliation(s)
- Jihong Yang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yangbai Li
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Suying Li
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yan Zhang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Rui Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yun Qian
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Gahlay GK, Rajput N. The enigmatic sperm proteins in mammalian fertilization: an overview†. Biol Reprod 2020; 103:1171-1185. [PMID: 32761117 DOI: 10.1093/biolre/ioaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.
Collapse
Affiliation(s)
- Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
6
|
Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation. Aging (Albany NY) 2019; 10:3486-3506. [PMID: 30472698 PMCID: PMC6286824 DOI: 10.18632/aging.101660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Zearalenone (ZEA) is a well-known exogenous endocrine disruptor and can lead to severe negative effects on the human and animal reproductive process. Using a follicle culture model, we have previously shown that ZEA exposure significantly affected the follicular development and antrum formation but the underlying mechanisms are not well known. Therefore, in this study, we explored the metabolomic changes of granulosa cell (GC) culture media with or without ZEA exposure. The results showed that ZEA significantly increased phosphatidylcholine or phosphatidyl ethanolamine adducts in culture medium. A comprehensive analysis with the metabolome data from follicular fluid of small and large antral follicles showed that lyso phosphatidylcholine (LPC) was accumulated during follicle growth, but was depleted by ZEA exposure. Exogenous supplement with LPC to the follicle growth media or oocyte maturation media can partly protect the defect of ZEA exposure on follicular antrum formation and oocyte maturation. Taken together, our results demonstrate that ZEA exposure hinders the follicular growth and exogenous LPC can practically protect the defect of ZEA on follicular development and oocyte maturation.
Collapse
|
7
|
Hypothesis regarding the effects of gonadotropins on the level of free fatty acids and phospholipids in serum and follicular fluid during controlled ovarian stimulation. Med Hypotheses 2018; 123:30-34. [PMID: 30696588 DOI: 10.1016/j.mehy.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 01/16/2023]
Abstract
Controlled ovarian stimulation (COS) is used to augment the number of retrieved oocytes in in vitro fertilization (IVF). Follicular fluid (FF) contributes significantly to oocyte quality. Since the FF is composed of follicular secretions and plasma exudation, it reflects alterations in granulosa and thecal cells secretion as well as changes in the level of plasma constituents. Phospholipids (PL) and free fatty acids (FFA) are important constituents of both, FF and serum. Our hypothesis is that COS affects the level of PL and FFA in serum. Furthermore, since the level of PL and FFA in FF partially depends on their levels in serum, as a collaterally of our hypothesis is that the existing level of PL and FFA in serum correlates with the levels of PL and FFA in FF, and that the dose of applied gonadotropins during COS will correlate with the levels of PL and FFA in serum and FF. In addition, we assume that the level of PL and FFA in serum and in FF after COS will correlate with the retrieved number of GQ oocytes, one of the most important outcomes of COS. .
Collapse
|
8
|
Xu HY, Yang XG, Lu SS, Liang XW, Lu YQ, Zhang M, Lu KH. Treatment with acetyl-l-carnitine during in vitro maturation of buffalo oocytes improves oocyte quality and subsequent embryonic development. Theriogenology 2018; 118:80-89. [DOI: 10.1016/j.theriogenology.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/27/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
|
9
|
Wang C, Feng G, Shu J, Zhou H, Zhang B, Chen H, Lin R, Gan X, Wu Z, Wei T. Cumulus oophorus complexes favor physiologic selection of spermatozoa for intracytoplasmic sperm injection. Fertil Steril 2018; 109:823-831. [DOI: 10.1016/j.fertnstert.2017.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/04/2023]
|