1
|
Ge W, Zhao X, Gou S, Jin Q, Chen F, Ouyang Z, Lai C, Cui T, Mai B, Lu S, Zhong K, Liang Y, Chen T, Wu H, Li N, Ye Y, Lai L, Wang K. Evaluation of guide-free Cas9-induced genomic damage and transcriptome changes in pig embryos. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102035. [PMID: 37808924 PMCID: PMC10551558 DOI: 10.1016/j.omtn.2023.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Cas9 protein without sgRNAs can induce genomic damage at the cellular level in vitro. However, whether the detrimental effects occur in embryos after Cas9 treatment remains unknown. Here, using pig embryos as subjects, we observed that Cas9 protein transcribed from injected Cas9 mRNA can persist until at least the blastocyst stage. Cas9 protein alone can induce genome damage in preimplantation embryos, represented by the increased number of phosphorylated histone H2AX foci on the chromatin fiber, which led to apoptosis and decreased cell number of blastocysts. In addition, single-blastocyst RNA sequencing confirmed that Cas9 protein without sgRNAs can cause changes in the blastocyst transcriptome, depressing embryo development signal pathways, such as cell cycle, metabolism, and cellular communication-related signal pathways, while activating apoptosis and necroptosis signal pathways, which together resulted in impaired preimplantation embryonic development. These results indicated that attention should be given to the detrimental effects caused by the Cas9 protein when using CRISPR-Cas9 for germline genome editing, especially for the targeted correction of human pathological mutations using germline gene therapy.
Collapse
Affiliation(s)
- Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Xiaozhu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chengdan Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Tao Cui
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Baoyi Mai
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Sijia Lu
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Kexin Zhong
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Nan Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Yinghua Ye
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Wang L, Piao Y, Guo F, Wei J, Chen Y, Dai X, Zhang X. Current progress of pig models for liver cancer research. Biomed Pharmacother 2023; 165:115256. [PMID: 37536038 DOI: 10.1016/j.biopha.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yuexian Piao
- Invasive Technology Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
4
|
Hasegawa K, Nakano K, Nagaya M, Watanabe M, Uchikura A, Matsunari H, Umeyama K, Kobayashi E, Nagashima H. Transplantation of human cells into Interleukin-2 receptor gamma gene knockout pigs under several conditions. Regen Ther 2022; 21:62-72. [PMID: 35765545 PMCID: PMC9198816 DOI: 10.1016/j.reth.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Previously, we performed gene knockout (KO) of interleukin-2 receptor gamma (IL2RG) in porcine fetal fibroblasts using zinc finger nuclease-encoding mRNAs, subsequently generating IL2RG KO pigs using these cells through somatic cell nuclear transfer. The IL2RG KO pigs lacked a thymus and were deficient in T lymphocytes and natural killer cells, similar to human X-linked severe combined immunodeficiency (SCID) patients. The present study aimed to evaluate whether pigs can support the growth of xenografted human cells and have the potential to be an effective animal model. Methods The IL2RG XKOY pigs used in this study were obtained by mating IL2RG XKOX females with wild-type boars. This permitted the routine production of IL2RG KO pigs via natural breeding without complicated somatic cell cloning procedures; therefore, a sufficient number of pigs could be prepared. We transplanted human HeLa S3 cells expressing the tandem dimer tomato into the ears and pancreas of IL2RG KO pigs. Additionally, a newly developed method for the aseptic rearing of SCID pigs was used in case of necessity. Results Tumors from the transplanted cells quickly developed in all pigs and were verified by histology and immunohistochemistry. We also transplanted these cells into the pancreas of designated pathogen-free pigs housed in novel biocontainment facilities, and large tumors were confirmed. Conclusions IL2RG KO pigs have the potential to become useful animal models in a variety of translational biology fields. The present study aimed to evaluate whether IL2RG KO SCID-like pigs can host and support the growth of xenografted human cells under several conditions. Tumors from transplanted cells quickly developed in all pigs, as verified by histology and immunohistochemistry. IL2RG KO pigs have the potential to become extremely useful animal models in a variety of translational biology fields.
Collapse
Key Words
- DPF, designated pathogen-free
- IL, Interleukin
- IL2RG, interleukin-2 receptor gamma
- Interleukin-2 receptor gamma
- KO, knock out pigs
- NK cells, natural killer cells
- OIDP, operational immunodeficient pig
- PCR, polymerase chain reaction
- Pig
- SCID
- SCID, Severe combined immunodeficiency
- SCNT, somatic cell nuclear transfer
- SD, standard deviation
- U-iR, uterectomy-isolated rearing
- WT, wild-type pigs
- XLGD, X-linked genetic diseases
- Xenotransplantation
- ZFN, Zinc finger nuclease
- tdTomato, tandem dimer Tomato
Collapse
Affiliation(s)
- Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Kazuaki Nakano
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Masahito Watanabe
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Kazuhiro Umeyama
- PorMedTec Co. Ltd., 2-3227 MIta, Tama-ku, Kawasaki, Kanagawa, 214-0034, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine - Tokyo, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
5
|
Sper RB, Proctor J, Lascina O, Guo L, Polkoff K, Kaeser T, Simpson S, Borst L, Gleason K, Zhang X, Collins B, Murphy Y, Platt JL, Piedrahita JA. Allogeneic and xenogeneic lymphoid reconstitution in a RAG2 -/- IL2RG y/- severe combined immunodeficient pig: A preclinical model for intrauterine hematopoietic transplantation. Front Vet Sci 2022; 9:965316. [PMID: 36311661 PMCID: PMC9614384 DOI: 10.3389/fvets.2022.965316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated RAG2−/−IL2RGy/− immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34+ hematopoietic stem cells after in utero cell transplantation. Following intrauterine injection at day 42–45 of gestation, fetuses were allowed to gestate to term and analyzed postnatally for the presence of pig (allogeneic) and human (xenogeneic) B cells, T-cells and NK cells in peripheral blood and other lymphoid tissues. Engraftment of allogeneic hematopoietic cells was detected based on co-expression of pH2B-eGFP and various markers of differentiation. Analysis of spleen revealed robust generation and engraftment of pH2B-eGFP mature B cells (and IgH recombination) and mature T-cells (and TCR-β recombination), T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. The thymus revealed engraftment of pH2B-eGFP double negative precursors (CD4−CD8−) as well as double positive (CD4+, CD8+) precursors and single positive T-cells. After intrauterine administration of human CD34+ hematopoietic stem cells, analysis of peripheral blood and lymphoid tissues revealed the presence of human T-cells (CD3+CD4+ and CD3+CD8+) but no detectable B cells or NK cells. The frequency of human CD45+ cells in the circulation decreased rapidly and were undetectable within 2 weeks of age. The frequency of human CD45+ cells in the spleen also decreased rapidly, becoming undetectable at 3 weeks. In contrast, human CD45+CD3+T-cells comprised >70% of cells in the pig thymus at birth and persisted at the same frequency at 3 weeks. Most human CD3+ cells in the pig's thymus expressed CD4 or CD8, but few cells were double positive (CD4+ CD8+). In addition, human CD3+ cells in the pig thymus contained human T-cell excision circles (TREC), suggesting de novo development. Our data shows that the pig thymus provides a microenvironment conducive to engraftment, survival and development of human T-cells and provide evidence that the developing T-cell compartment can be populated to a significant extent by human cells in large animals.
Collapse
Affiliation(s)
- Renan B. Sper
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jessica Proctor
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Odessa Lascina
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ling Guo
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kathryn Polkoff
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tobias Kaeser
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sean Simpson
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Luke Borst
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Katherine Gleason
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Xia Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Bruce Collins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Yanet Murphy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey L. Platt
- Department of Surgery and Microbiology and Immunology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Jorge A. Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States,*Correspondence: Jorge A. Piedrahita
| |
Collapse
|
6
|
Zhao H, Ye W, Guo J, Wang J, Jiao D, Xu K, Yang C, Chen S, Jamal MA, Bai Z, Wei T, Cai J, Nguyen TD, Qing Y, Cheng W, Jia B, Li H, Zhao HY, Chen Q, Wei HJ. Development of RAG2-/-IL2Rγ-/Y immune deficient FAH-knockout miniature pig. Front Immunol 2022; 13:950194. [PMID: 36032112 PMCID: PMC9400017 DOI: 10.3389/fimmu.2022.950194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Collapse
Affiliation(s)
- Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Zhongbin Bai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jie Cai
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| |
Collapse
|
7
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Boettcher AN, Schachtschneider KM, Schook LB, Tuggle CK. Swine models for translational oncological research: an evolving landscape and regulatory considerations. Mamm Genome 2022; 33:230-240. [PMID: 34476572 PMCID: PMC8888764 DOI: 10.1007/s00335-021-09907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023]
Abstract
Swine biomedical models have been gaining in popularity over the last decade, particularly for applications in oncology research. Swine models for cancer research include pigs that have severe combined immunodeficiency for xenotransplantation studies, genetically modified swine models which are capable of developing tumors in vivo, as well as normal immunocompetent pigs. In recent years, there has been a low success rate for the approval of new oncological therapeutics in clinical trials. The two leading reasons for these failures are either due to toxicity and safety issues or lack of efficacy. As all therapeutics must be tested within animal models prior to clinical testing, there are opportunities to expand the ability to assess efficacy and toxicity profiles within the preclinical testing phases of new therapeutics. Most preclinical in vivo testing is performed in mice, canines, and non-human primates. However, swine models are an alternative large animal model for cancer research with similarity to human size, genetics, and physiology. Additionally, tumorigenesis pathways are similar between human and pigs in that similar driver mutations are required for transformation. Due to their larger size, the development of orthotopic tumors is easier than in smaller rodent models; additionally, porcine models can be harnessed for testing of new interventional devices and radiological/surgical approaches as well. Taken together, swine are a feasible option for preclinical therapeutic and device testing. The goals of this resource are to provide a broad overview on regulatory processes required for new therapeutics and devices for use in the clinic, cross-species differences in oncological therapeutic responses, as well as to provide an overview of swine oncology models that have been developed that could be used for preclinical testing to fulfill regulatory requirements.
Collapse
Affiliation(s)
| | - Kyle M. Schachtschneider
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois, United States
| | - Lawrence B. Schook
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Urbana-Champaign, Department of Animal Sciences, Illinois, United States
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
10
|
Hendricks-Wenger A, Nagai-Singer MA, Uh K, Vlaisavljevich E, Lee K, Allen IC. Employing Novel Porcine Models of Subcutaneous Pancreatic Cancer to Evaluate Oncological Therapies. Methods Mol Biol 2022; 2394:883-895. [PMID: 35094364 DOI: 10.1007/978-1-0716-1811-0_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunocompromised mice are commonly utilized to study pancreatic cancer and other malignancies. The ability to xenograft tumors in either subcutaneous or orthotopic locations provides a robust model to study diverse biological features of human malignancies. However, there is a dire need for large animal models that better recapitulate human anatomy in terms of size and physiology. These models will be critical for biomedical device development, surgical optimization, and drug discovery. Here, we describe the generation and application of immunocompromised pigs lacking RAG2 and IL2RG as a novel model for human xenograft studies. These SCID-like pigs closely resemble NOD scid gamma mice and are receptive to human tumor tissue, cell lines, and organoid xenografts. However, due to their immunocompromised nature, these immunocompromised animals require housing and maintenance under germfree conditions. In this protocol, we describe the use of these pigs in a subcutaneous tumor injection study with human PANC1 cells. The tumors demonstrate a steady, linear growth curve, reaching 1.0 cm within 30 days post injection. The model described here is focused on subcutaneous injections behind the ear. However, it is readily adaptable for other locations and additional human cell types.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
12
|
Gu P, Yang Q, Chen B, Bie YN, Liu W, Tian Y, Luo H, Xu T, Liang C, Ye X, Liu Y, Tang X, Gu W. Genetically blocking HPD via CRISPR-Cas9 protects against lethal liver injury in a pig model of tyrosinemia type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:530-547. [PMID: 33997102 PMCID: PMC8099604 DOI: 10.1016/j.omtm.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Hereditary tyrosinemia type I (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury (LLI). Therapeutic options for HT1 remain limited. The FAH−/− pig, a well-characterized animal model of HT1, represents a promising candidate for testing novel therapeutic approaches to treat this condition. Here, we report an improved single-step method to establish a biallelic (FAH−/−) mutant porcine model using CRISPR-Cas9 and cytoplasmic microinjection. We also tested the feasibility of rescuing HT1 pigs through inactivating the 4-hydroxyphenylpyruvic acid dioxygenase (HPD) gene, which functions upstream of the pathogenic pathway, rather than by directly correcting the disease-causing gene as occurs with traditional gene therapy. Direct intracytoplasmic delivery of CRISPR-Cas9 targeting HPD before intrauterine death reprogrammed the tyrosine metabolism pathway and protected pigs against FAH deficiency-induced LLI. Characterization of the F1 generation revealed consistent liver-protective features that were germline transmissible. Furthermore, HPD ablation ameliorated oxidative stress and inflammatory responses and restored the gene profile relating to liver metabolism homeostasis. Collectively, this study not only provided a novel large animal model for exploring the pathogenesis of HT1, but also demonstrated that CRISPR-Cas9-mediated HPD ablation alleviated LLI in HT1 pigs and represents a potential therapeutic option for the treatment of HT1.
Collapse
Affiliation(s)
- Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bangzhu Chen
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yuguang Tian
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Hongquan Luo
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Chunjin Liang
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xing Ye
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangwu Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,Songshan Lake Pearl Laboratory Animal Science & Technology Co., Ltd., Dongguan 523808, China
| |
Collapse
|
13
|
Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporation. Sci Rep 2021; 11:7584. [PMID: 33828203 PMCID: PMC8027815 DOI: 10.1038/s41598-021-87228-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
Collapse
|
14
|
Ratner LD, La Motta GE, Briski O, Salamone DF, Fernandez-Martin R. Practical Approaches for Knock-Out Gene Editing in Pigs. Front Genet 2021; 11:617850. [PMID: 33747029 PMCID: PMC7973260 DOI: 10.3389/fgene.2020.617850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Pigs are an important resource for meat production and serve as a model for human diseases. Due to their physiological and anatomical similarities to humans, these animals can recapitulate symptoms of human diseases, becoming an effective model for biomedical research. Although, in the past pig have not been widely used partially because of the difficulty in genetic modification; nowadays, with the new revolutionary technology of programmable nucleases, and fundamentally of the CRISPR-Cas9 systems, it is possible for the first time to precisely modify the porcine genome as never before. To this purpose, it is necessary to introduce the system into early stage zygotes or to edit cells followed by somatic cell nuclear transfer. In this review, several strategies for pig knock-out gene editing, using the CRISPR-Cas9 system, will be summarized, as well as genotyping methods and different delivery techniques to introduce these tools into the embryos. Finally, the best approaches to produce homogeneous, biallelic edited animals will be discussed.
Collapse
Affiliation(s)
- Laura Daniela Ratner
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gaston Emilio La Motta
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olinda Briski
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Fernandez-Martin
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
高 孟, 朱 星, 王 诗, 张 炳, 张 芸, 何 宇, 周 燕, 李 顺, 杨 光, 廖 光, 包 骥, 步 宏. [Rapid screening of single guide RNA targeting pig genome and the harvesting of monoclonal cells by microarray seal]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:111-121. [PMID: 33899435 PMCID: PMC10307559 DOI: 10.7507/1001-5515.202006032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA in vitro to avoid wasting time and resource costs before animal experiments. In addition, how to efficiently obtain positive gene editing monoclonal cells is a difficult problem to be solved. In this study, a rapid sgRNA screening method targeting the pig genome was established and we rapidly obtained Fah gene edited cells, laying a foundation for the subsequent production of Fah knockout pigs as human hepatocyte bioreactor. At the same time, the method of obtaining monoclonal cells using pattern microarray culture technology was explored.
Collapse
Affiliation(s)
- 孟雨 高
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 星龙 朱
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 诗盛 王
- 四川大学华西医院 华西华盛顿线粒体与代谢研究中心(成都 610041)West China - Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 炳琪 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 芸琳 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宇婷 何
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 燕燕 周
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 顺 李
- 电子科技大学 生命科学技术学院 生物物理研究室(成都 611731)Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China
| | - 光 杨
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 光能 廖
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 骥 包
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宏 步
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
16
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
17
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
18
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
19
|
Ren J, Yu D, Fu R, An P, Sun R, Wang Z, Guo R, Li H, Zhang Y, Li Z, Yang YG, Li W, Hai T, Hu Z. IL2RG-deficient minipigs generated via CRISPR/Cas9 technology support the growth of human melanoma-derived tumours. Cell Prolif 2020; 53:e12863. [PMID: 32871045 PMCID: PMC7574875 DOI: 10.1111/cpr.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Immunodeficient mice injected with human cancer cell lines have been used for human oncology studies and anti‐cancer drug trials for several decades. However, rodents are not ideal species for modelling human cancer because rodents are physiologically dissimilar to humans. Therefore, anti‐tumour drugs tested effective in rodents have a failure rate of 90% or higher in phase III clinical trials. Pigs are similar to humans in size, anatomy, physiology and drug metabolism rate, rendering them a desirable pre‐clinical animal model for assessing anti‐cancer drugs. However, xenogeneic immune rejection is a major barrier to the use of pigs as hosts for human tumours. Interleukin (IL)‐2 receptor γ (IL2RG), a common signalling subunit for multiple immune cytokines including IL‐2, IL‐4, IL‐7, IL‐9, IL‐15 and IL‐21, is required for proper lymphoid development. Materials and Methods IL2RG−/Y pigs were generated by CRISPR/Cas9 technology, and examined for immunodeficiency and ability to support human oncogenesis. Results Compared to age‐matched wild‐type pigs, IL2RG−/Y pigs exhibited a severely impaired immune system as shown by lymphopenia, lymphoid organ atrophy, poor immunoglobulin function, and T‐ and NK‐cell deficiency. Human melanoma Mel888 cells generated tumours in IL2RG−/Y pigs but not in wild‐type littermates. The human tumours grew faster in IL2RG−/Y pigs than in nude mice. Conclusions Our results indicate that these pigs are promising hosts for modelling human cancer in vivo, which may aid in the discovery and development of anti‐cancer drugs.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rui Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Peipei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Runfa Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Haoyun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
20
|
Hirata M, Wittayarat M, Tanihara F, Sato Y, Namula Z, Le QA, Lin Q, Takebayashi K, Otoi T. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cell Dev Biol Anim 2020; 56:614-621. [PMID: 32978715 DOI: 10.1007/s11626-020-00507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated whether electroporation could be used for one-step multiplex CRISPR/Cas9-based genome editing, targeting IL2RG and GHR in porcine embryos. First, we evaluated and selected guide RNAs (gRNAs) by analyzing blastocyst formation rates and genome editing efficiency. This was performed in embryos electroporated with one of three different gRNAs targeting IL2RG or one of two gRNAs targeting GHR. No significant differences in embryo development rates were found between control embryos and those subjected to electroporation, irrespective of the target gene. Two gRNAs targeting IL2RG (nos. 2 and 3) contributed to an increased biallelic mutation rate in porcine blastocysts compared with gRNA no. 1. There were no significant differences in the mutation rates between the two gRNAs targeting GHR. In our next experiment, the mutation efficiency and the development of embryos simultaneously electroporated with gRNAs targeting IL2RG and GHR were investigated. Similar embryo development rates were observed between embryos electroporated with two gRNAs and control embryos. When IL2RG-targeting gRNA no. 2 was used with GHR-targeting gRNAs no. 1 or no. 2, a significantly higher double biallelic mutation rate was observed than with IL2RG-targeting gRNA no. 3. In conclusion, we demonstrate the feasibility of using electroporation to transfer multiple gRNAs and Cas9 into porcine zygotes, enabling the double biallelic mutation of multiple genes with favorable embryo survival.
Collapse
Affiliation(s)
- Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Zhao Namula
- College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Qingyi Lin
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Koki Takebayashi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
21
|
Lee K, Farrell K, Uh K. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine. Reprod Fertil Dev 2020; 32:40-49. [PMID: 32188556 DOI: 10.1071/rd19273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.
Collapse
Affiliation(s)
- Kiho Lee
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA; and Corresponding author.
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA
| |
Collapse
|
22
|
Iqbal MA, Hong K, Kim JH, Choi Y. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines. BMB Rep 2020. [PMID: 31722780 PMCID: PMC6889892 DOI: 10.5483/bmbrep.2019.52.11.267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell−/B cell−/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T−B+NK− cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
23
|
Dang-Nguyen TQ, Wells D, Haraguchi S, Men NT, Nguyen HT, Noguchi J, Kaneko H, Kikuchi K. Combined refinements to somatic cell nuclear transfer methods improve porcine embryo development. J Reprod Dev 2020; 66:281-286. [PMID: 32173679 PMCID: PMC7297629 DOI: 10.1262/jrd.2019-156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The discovery of how to utilize CRISPR (clustered, regularly interspaced, short, palindromic repeats)-Cas (CRISPR-associated) systems for genome modification has accelerated
development of the field of genome editing, especially in large animals such as pigs. The low efficiency of somatic cell nuclear transfer (SCNT) is now becoming a major obstacle in
the production of genome-edited animals via cell-mediated approaches and improving efficacy of this technique is crucial. In this study, we propose a few simple modifications to a
zona-free SCNT protocol that are effective to produce numerous high-quality blastocysts. To refine the SCNT protocol we modified the following steps/factors: 1) culture medium for
SCNT embryos, 2) chemical treatment to prevent precocious activation of the manipulated/reconstructed oocytes and 3) donor cell serum starvation treatment. Although changes in each
of these steps only resulted in small improvements, the combination of all modifications altogether significantly enhanced developmental competence of SCNT embryos. Our modified
method yielded approximately three times greater blastocyst formation rates. Moreover, resulting blastocysts had roughly twice as many cells as compared to blastocysts produced by
the conventional SCNT method. With these significant in vitro improvements, our refined SCNT method is potentially suited for use in the production of genome
edited pigs.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan
| | - David Wells
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan
| | - Hiep Thi Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
24
|
Boettcher AN, Li Y, Ahrens AP, Kiupel M, Byrne KA, Loving CL, Cino-Ozuna AG, Wiarda JE, Adur M, Schultz B, Swanson JJ, Snella EM, Ho CS(S, Charley SE, Kiefer ZE, Cunnick JE, Putz EJ, Dell'Anna G, Jens J, Sathe S, Goldman F, Westin ER, Dekkers JCM, Ross JW, Tuggle CK. Novel Engraftment and T Cell Differentiation of Human Hematopoietic Cells in ART-/-IL2RG-/Y SCID Pigs. Front Immunol 2020; 11:100. [PMID: 32117254 PMCID: PMC7017803 DOI: 10.3389/fimmu.2020.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Pigs with severe combined immunodeficiency (SCID) are an emerging biomedical animal model. Swine are anatomically and physiologically more similar to humans than mice, making them an invaluable tool for preclinical regenerative medicine and cancer research. One essential step in further developing this model is the immunological humanization of SCID pigs. In this work we have generated T- B- NK- SCID pigs through site directed CRISPR/Cas9 mutagenesis of IL2RG within a naturally occurring DCLRE1C (ARTEMIS)-/- genetic background. We confirmed ART-/-IL2RG-/Y pigs lacked T, B, and NK cells in both peripheral blood and lymphoid tissues. Additionally, we successfully performed a bone marrow transplant on one ART-/-IL2RG-/Y male SCID pig with bone marrow from a complete swine leukocyte antigen (SLA) matched donor without conditioning to reconstitute porcine T and NK cells. Next, we performed in utero injections of cultured human CD34+ selected cord blood cells into the fetal ART-/-IL2RG-/Y SCID pigs. At birth, human CD45+ CD3ε+ cells were detected in cord and peripheral blood of in utero injected SCID piglets. Human leukocytes were also detected within the bone marrow, spleen, liver, thymus, and mesenteric lymph nodes of these animals. Taken together, we describe critical steps forwards the development of an immunologically humanized SCID pig model.
Collapse
Affiliation(s)
| | - Yunsheng Li
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Amanda P. Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - A. Giselle Cino-Ozuna
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jayne E. Wiarda
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Malavika Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Blythe Schultz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Elizabeth M. Snella
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Chak-Sum (Sam) Ho
- Gift of Hope Organ and Tissue Donor Network, Itasca, IL, United States
| | - Sara E. Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Zoe E. Kiefer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Ellie J. Putz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Jackie Jens
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Swanand Sathe
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Frederick Goldman
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Erik R. Westin
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
25
|
Lee K, Uh K, Farrell K. Current progress of genome editing in livestock. Theriogenology 2020; 150:229-235. [PMID: 32000993 DOI: 10.1016/j.theriogenology.2020.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Historically, genetic engineering in livestock proved to be challenging. Without stable embryonic stem cell lines to utilize, somatic cell nuclear transfer (SCNT) had to be employed to produce many of the genetically engineered (GE) livestock models. Through the genetic engineering of somatic cells followed by SCNT, GE livestock models could be generated carrying site-specific modifications. Although successful, only a few GE livestock models were generated because of low efficiency and associated birth defects. Recently, there have been major strides in the development of genome editing tools: Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENS), and Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (Cas9) system. These tools rely on the generation of a double strand DNA break, followed by one of two repair pathways: non-homologous end joining (NHEJ) or homology directed repair (HDR). Compared to the traditional approaches, these tools dramatically reduce time and effort needed to establish a GE animal. Another benefit of utilizing genome editing tools is the application of direct injection into developing embryos to induce targeted mutations, therefore, eliminating side effects associated with SCNT. Emerging technological advancements of genome editing systems have dramatically improved efficiency to generate GE livestock models for both biomedical and agricultural purposes. Although the efficiency of genome editing tools has revolutionized GE livestock production, improvements for safe and consistent application are desired. This review will provide an overview of genome editing techniques, as well as examples of GE livestock models for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
26
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
27
|
Hu J, Tian J, Zhang F, Wang H, Yin J. Pxr- and Nrf2- mediated induction of ABC transporters by heavy metal ions in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113329. [PMID: 31600704 DOI: 10.1016/j.envpol.2019.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 05/13/2023]
Abstract
Transcription factors including pregnane X receptor (Pxr) and nuclear factor-erythroid 2-related factor-2 (Nrf2) are important modulators of Adenosine triphosphate-binding cassette (ABC) transporters in mammalian cells. However, whether such modulation is conserved in zebrafish embryos remains largely unknown. In this manuscript, pxr- and nrf2-deficient models were constructed with CRISPR/Cas9 system, to evaluate the individual function of Pxr and Nrf2 in the regulation of ABC transporters and detoxification of heavy metal ions like Cd2+ and Ag+. As a result, both Cd2+ and Ag+ conferred extensive interactions with ABC transporters in wild type (WT) embryos: their accumulation and toxicity were affected by the activity of ABC transporters, and they significantly induced the mRNA expressions of ABC transporters. These induction effects were reduced by the mutation of pxr and nrf2, but elevations in the basal expression of ABC transporters compensated for the loss of their inducibility. This could be an explanation for remaining transporter function in both mutant models as well as the unaltered toxicity of metal ions in pxr-deficient embryos. However, mutation of nrf2 disrupted the production of glutathione (GSH), resulting in the enhanced toxicity of Cd2+/Ag+ in zebrafish embryos. In addition, elevated expressions of other transcription factors like aryl hydrocarbon receptor (ahr) 1b, peroxisome proliferator-activated receptor (ppar)-β, and nrf2 were found in pxr-deficient models without any treatment, while enhanced induction of ahr1b, ppar-β and pxr could only be seen in nrf2-deficient embryos after the treatment of metal ions, indicating different compensation phenomena for the absence of transcription factors. After all, pxr-deficient and nrf2-deficient zebrafish embryos are useful tools in the functional investigation of Pxr and Nrf2 in the early life stages of aquatic organisms. However, the compensatory mechanisms should be taken into consideration when interpreting the results and need in-depth investigations.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Feng Zhang
- Suzhou GCL Photovoltaic Technology Co., Ltd, Suzhou, Jiangsu 215163, PR China
| | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Shandong Guo Ke Medical Technology Development Co., Ltd, PR China.
| |
Collapse
|
28
|
Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, Cobos-Figueroa J, Ousinde O, Bermejo-Álvarez P. Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 2019; 9:14900. [PMID: 31624292 PMCID: PMC6797768 DOI: 10.1038/s41598-019-51366-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 09/30/2019] [Indexed: 11/29/2022] Open
Abstract
Genetic mosaicism is the presence of more than two alleles on an individual and it is commonly observed following CRISPR microinjection of zygotes. This phenomenon appears when DNA replication precedes CRISPR-mediated genome edition and it is undesirable because it reduces greatly the odds for direct KO generation by randomly generated indels. In this study, we have developed alternative protocols to reduce mosaicism rates following CRISPR-mediated genome edition in bovine. In a preliminary study we observed by EdU incorporation that DNA replication has already occurred at the conventional microinjection time (20 hpi). Aiming to reduce mosaicism appearance, we have developed three alternative microinjection protocols: early zygote microinjection (10 hpi RNA) or oocyte microinjection before fertilization with either RNA or Ribonucleoprotein delivery (0 hpi RNA or 0 hpi RNP). All three alternative microinjection protocols resulted in similar blastocyst and genome edition rates compared to the conventional 20 hpi group, whereas mosaicism rates were significantly reduced in all early delivery groups (~10-30% of edited embryos being mosaic depending on the loci) compared to conventional 20 hpi microinjection (100% mosaicism rate). These strategies constitute an efficient way to reduce the number of indels, increasing the odds for direct KO generation.
Collapse
Affiliation(s)
| | | | | | | | - O Ousinde
- Animal Reproduction Department, INIA, Madrid, Spain
| | | |
Collapse
|
29
|
Chen B, Gu P, Jia J, Liu W, Liu Y, Liu W, Xu T, Lin X, Lin T, Liu Y, Chen H, Xu M, Yuan J, Zhang J, Zhang Y, Xiao D, Gu W. Optimization Strategy for Generating Gene-edited Tibet Minipigs by Synchronized Oestrus and Cytoplasmic Microinjection. Int J Biol Sci 2019; 15:2719-2732. [PMID: 31754342 PMCID: PMC6854383 DOI: 10.7150/ijbs.35930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
The Tibet minipig is a rare highland pig breed worldwide and has many applications in biomedical and agricultural research. However, Tibet minipigs are not like domesticated pigs in that their ovulation number is low, which is unfavourable for the collection of zygotes. Partly for this reason, few studies have reported the successful generation of genetically modified Tibet minipigs by zygote injection. To address this issue, we described an efficient way to generate gene-edited Tibet minipigs, the major elements of which include the utilization of synchronized oestrus instead of superovulation to obtain zygotes, optimization of the preparation strategy, and co-injection of clustered regularly interspaced short palindromic repeat sequences associated protein 9 (Cas9) mRNA and single-guide RNAs (sgRNAs) into the cytoplasm of zygotes. We successfully obtained allelic TYR gene knockout (TYR-/-) Tibet minipigs with a typical albino phenotype (i.e., red-coloured eyes with light pink-tinted irises and no pigmentation in the skin and hair) as well as TYR-/-IL2RG-/- and TYR-/-RAG1-/- Tibet minipigs with typical phenotypes of albinism and immunodeficiency, which was characterized by thymic atrophy and abnormal immunocyte proportions. The overall gene editing efficiency was 75% for the TYR single gene knockout, while for TYR-IL2RG and TYR-RAG1 dual gene editing, the values were 25% and 75%, respectively. No detectable off-target mutations were observed. By intercrossing F0 generation minipigs, targeted genetic mutations can also be transmitted to gene-edited minipigs' offspring through germ line transmission. This study is a valuable exploration for the efficient generation of gene-edited Tibet minipigs with medical research value in the future.
Collapse
Affiliation(s)
- Bangzhu Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Peng Gu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Junshuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yumin Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Xiaolin Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Taoyan Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Hengwei Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Mingchen Xu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jin Yuan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jianing Zhang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Lee Y, Shim J, Ko N, Kim HJ, Park JK, Kwak K, Kim H, Choi K. Effect of alanine supplementation during in vitro maturation on oocyte maturation and embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs. Theriogenology 2019; 127:80-87. [DOI: 10.1016/j.theriogenology.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
|
31
|
Boettcher AN, Ahrens AP, Charley SE, Tuggle CK. A Comprehensive Protocol for Laparotomy in Swine to Facilitate Ultrasound-Guided Injection into the Fetal Intraperitoneal Space. Comp Med 2019; 69:123-129. [PMID: 30755290 DOI: 10.30802/aalas-cm-18-000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Swine are a commonly used animal model for biomedical research. One research application of swine models is the in utero injection of human or pig cells into the fetal liver (FL) or intraperitoneal space. In utero injections can be accomplished through laparotomy procedures in pregnant swine. In this study, we aimed to establish comprehensive laparotomy protocols for ultrasound-guided injections into fetuses. Two pregnant gilts, with a total of 16 fetuses, underwent laparotomy at 41 and 42 d of gestation. During surgery, we attempted to inject half of the fetuses in the FL or intraperitoneal space with saline and titanium wire for radiographic imaging after birth. After the laparotomy and fetal injections, both gilts maintained pregnancy throughout gestation and initiated labor at full term. Of the 16 fetuses present at the time of laparotomy, 12 were liveborn, 2 were stillborn, and the remaining 2 were mummies. A total of 7 fetuses from the 2 litters were known to have been injected with a wire during the surgery. After farrowing, piglets were radiographed, and 6 piglets were identified to have wire within the abdominal space. Livers were dissected, and additional radiographs were obtained. It was determined that one piglet had wire within the liver, whereas the other 5 had wire within the intraperitoneal space. Overall, we describe in-depth laparotomy surgery protocols, ultrasound-guided injection of saline and titanium wire into the FL or intraperitoneal space, postoperative monitoring protocols, and information on radiographic detection of titanium wire after piglet birth. These protocols can be followed by other research groups intending to inject cells of interest into either the intraperitoneal space or FL of fetal piglets.
Collapse
Affiliation(s)
| | - Amanda P Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, Iowa
| | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | |
Collapse
|
32
|
Boettcher AN, Kiupel M, Adur MK, Cocco E, Santin AD, Bellone S, Charley SE, Blanco-Fernandez B, Risinger JI, Ross JW, Tuggle CK, Shapiro EM. Human Ovarian Cancer Tumor Formation in Severe Combined Immunodeficient (SCID) Pigs. Front Oncol 2019; 9:9. [PMID: 30723704 PMCID: PMC6349777 DOI: 10.3389/fonc.2019.00009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer (OvCa) is the most lethal gynecologic malignancy, with two-thirds of patients having late-stage disease (II-IV) at diagnosis. Improved diagnosis and therapies are needed, yet preclinical animal models for ovarian cancer research have primarily been restricted to rodents, for data on which can fail to translate to the clinic. Thus, there is currently a need for a large animal OvCa model. Therefore, we sought to determine if pigs, being more similar to humans in terms of anatomy and physiology, would be a viable preclinical animal model for OvCa. We injected human OSPC-ARK1 cells, a chemotherapy-resistant primary ovarian serous papillary carcinoma cell line, into the neck muscle and ear tissue of four severe combined immune deficient (SCID) and two non-SCID pigs housed in novel biocontainment facilities to study the ability of human OvCa cells to form tumors in a xenotransplantation model. Tumors developed in ear tissue of three SCID pigs, while two SCID pigs developed tumors in neck tissue; no tumors were detected in non-SCID control pigs. All tumor masses were confirmed microscopically as ovarian carcinomas. The carcinomas in SCID pigs were morphologically similar to the original ovarian carcinoma and had the same immunohistochemical phenotype based on expression of Claudin 3, Claudin 4, Cytokeratin 7, p16, and EMA. Confirmation that OSPC-ARK1 cells form carcinomas in SCID pigs substantiates further development of orthotopic models of OvCa in pigs.
Collapse
Affiliation(s)
- Adeline N Boettcher
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Emiliano Cocco
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - John I Risinger
- Department of Radiology, Michigan State University, East Lansing, MI, United States.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Production of Cloned Pigs Derived from Double Gene Knockout Cells Using CRISPR/Cas9 System and MACS-based Enrichment System. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Boettcher AN, Loving CL, Cunnick JE, Tuggle CK. Development of Severe Combined Immunodeficient (SCID) Pig Models for Translational Cancer Modeling: Future Insights on How Humanized SCID Pigs Can Improve Preclinical Cancer Research. Front Oncol 2018; 8:559. [PMID: 30560086 PMCID: PMC6284365 DOI: 10.3389/fonc.2018.00559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Within the last decade there have been several severe combined immunodeficient (SCID) pig models discovered or genetically engineered. The animals have mutations in ARTEMIS, IL2RG, or RAG1/2 genes, or combinations thereof, providing SCID pigs with NK cells, but deficient in T and B cells, or deficient in NK, T, and B cells for research studies. Biocontainment facilities and positive pressure isolators are developed to limit pathogen exposure and prolong the life of SCID pigs. Raising SCID pigs in such facilities allows for completion of long-term studies such as xenotransplantation of human cells. Ectopically injected human cancer cell lines develop into tumors in SCID pigs, thus providing a human-sized in vivo model for evaluating imaging methods to improve cancer detection and therapeutic research and development. Immunocompromised pigs have the potential to be immunologically humanized by xenotransplantation with human hematopoietic stem cells, peripheral blood leukocytes, or fetal tissue. These cells can be introduced through various routes including injection into fetal liver or the intraperitoneal (IP) space, or into piglets by intravenous, IP, and intraosseous administration. The development and maintenance of transplanted human immune cells would be initially (at least) dependent on immune signaling from swine cells. Compared to mice, swine share higher homology in immune related genes with humans. We hypothesize that the SCID pig may be able to support improved engraftment and differentiation of a wide range of human immune cells as compared to equivalent mouse models. Humanization of SCID pigs would thus provide a valuable model system for researchers to study interactions between human tumor and human immune cells. Additionally, as the SCID pig model is further developed, it may be possible to develop patient-derived xenograft models for individualized therapy and drug testing. We thus theorize that the individualized therapeutic approach would be significantly improved with a humanized SCID pig due to similarities in size, metabolism, and physiology. In all, porcine SCID models have significant potential as an excellent preclinical animal model for therapeutic testing.
Collapse
Affiliation(s)
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
35
|
Boettcher AN, Cunnick JE, Powell EJ, Egner TK, Charley SE, Loving CL, Tuggle CK. Porcine signal regulatory protein alpha binds to human CD47 to inhibit phagocytosis: Implications for human hematopoietic stem cell transplantation into severe combined immunodeficient pigs. Xenotransplantation 2018; 26:e12466. [PMID: 30311702 DOI: 10.1111/xen.12466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Severe combined immunodeficient (SCID) pigs are an emerging animal model being developed for biomedical and regenerative medicine research. SCID pigs can successfully engraft human-induced pluripotent stem cells and cancer cell lines. The development of a humanized SCID pig through xenotransplantation of human hematopoietic stem cells (HSCs) would be a further demonstration of the value of such a large animal SCID model. Xenotransplantation success with HSCs into non-obese diabetic (NOD)-derived SCID mice is dependent on the ability of NOD mouse signal regulatory protein alpha (SIRPA) to bind human CD47, inducing higher phagocytic tolerance than other mouse strains. Therefore, we investigated whether porcine SIRPA binds human CD47 in the context of developing a humanized SCID pig. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from SCID and non-SCID pigs. Flow cytometry was used to assess whether porcine monocytes could bind to human CD47. Porcine monocytes were isolated from PBMCs and were subjected to phagocytosis assays with pig, human, and mouse red blood cell (RBC) targets. Blocking phagocytosis assays were performed by incubating human RBCs with anti-human CD47 blocking antibody B6H12, non-blocking antibody 2D3, and nonspecific IgG1 antibody and exposing to human or porcine monocytes. RESULTS We found that porcine SIRPA binds to human CD47 in vitro by flow cytometric assays. Additionally, phagocytosis assays were performed, and we found that porcine monocytes phagocytose human and porcine RBCs at significantly lower levels than mouse RBCs. When human RBCs were preincubated with CD47 antibodies B6H12 or 2D3, phagocytosis was induced only after B6H12 incubation, indicating the lower phagocytic activity of porcine monocytes with human cells requires interaction between porcine SIRPA and human CD47. CONCLUSIONS We have shown the first evidence that porcine monocytes can bind to human CD47 and are phagocytically tolerant to human cells, suggesting that porcine SCID models have the potential to support engraftment of human HSCs.
Collapse
Affiliation(s)
| | - Joan E Cunnick
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Ellis J Powell
- Department of Animal Science, Iowa State University, Ames, Iowa.,National Animal Disease Center, Ruminant Diseases and Immunology Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Crystal L Loving
- National Animal Disease Center, Food Safety and Enteric Pathogens Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | |
Collapse
|
36
|
Infection Dynamics of Hepatitis E Virus in Wild-Type and Immunoglobulin Heavy Chain Knockout J H -/- Gnotobiotic Piglets. J Virol 2018; 92:JVI.01208-18. [PMID: 30111571 DOI: 10.1128/jvi.01208-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022] Open
Abstract
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important but incompletely understood pathogen causing high mortality during pregnancy and leading to chronic hepatitis in immunocompromised individuals. The underlying mechanisms leading to hepatic damage remain unknown; however, the humoral immune response is implicated. In this study, immunoglobulin (Ig) heavy chain JH -/- knockout gnotobiotic pigs were generated using CRISPR/Cas9 technology to deplete the B-lymphocyte population, resulting in an inability to generate a humoral immune response to genotype 3 HEV infection. Compared to wild-type gnotobiotic piglets, the frequencies of B lymphocytes in the Ig heavy chain JH -/- knockouts were significantly lower, despite similar levels of other innate and adaptive T-lymphocyte cell populations. The dynamic of acute HEV infection was subsequently determined in heavy chain JH -/- knockout and wild-type gnotobiotic pigs. The data showed that wild-type piglets had higher viral RNA loads in feces and sera compared to the JH -/- knockout pigs, suggesting that the Ig heavy chain JH -/- knockout in pigs actually decreased the level of HEV replication. Both HEV-infected wild-type and JH -/- knockout gnotobiotic piglets developed more pronounced lymphoplasmacytic hepatitis and hepatocellular necrosis lesions than other studies with conventional pigs. The HEV-infected JH -/- knockout pigs also had significantly enlarged livers both grossly and as a ratio of liver/body weight compared to phosphate-buffered saline-inoculated groups. This novel gnotobiotic pig model will aid in future studies into HEV pathogenicity, an aspect which has thus far been difficult to reproduce in the available animal model systems.IMPORTANCE According to the World Health Organization, approximately 20 million HEV infections occur annually, resulting in 3.3 million cases of hepatitis E and >44,000 deaths. The lack of an efficient animal model that can mimic the full-spectrum of infection outcomes hinders our ability to delineate the mechanism of HEV pathogenesis. Here, we successfully generated immunoglobulin heavy chain JH -/- knockout gnotobiotic pigs using CRISPR/Cas9 technology, established a novel JH -/- knockout and wild-type gnotobiotic pig model for HEV, and systematically determined the dynamic of acute HEV infection in gnotobiotic pigs. It was demonstrated that knockout of the Ig heavy chain in pigs decreased the level of HEV replication. Infected wild-type and JH -/- knockout gnotobiotic piglets developed more pronounced HEV-specific lesions than other studies using conventional pigs, and the infected JH -/- knockout pigs had significantly enlarged livers. The availability of this novel model will facilitate future studies of HEV pathogenicity.
Collapse
|
37
|
Lamas-Toranzo I, Ramos-Ibeas P, Pericuesta E, Bermejo-Álvarez P. Directions and applications of CRISPR technology in livestock research. Anim Reprod 2018; 15:292-300. [PMID: 34178152 PMCID: PMC8202460 DOI: 10.21451/1984-3143-ar2018-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ablation (KO) or targeted insertion (KI) of specific genes or sequences has been essential
to test their roles on a particular biological process. Unfortunately, such genome modifications
have been largely limited to the mouse model, as the only way to achieve targeted mutagenesis
in other mammals required from somatic cell nuclear transfer, a time- and resource-consuming
technique. This difficulty has left research in livestock species largely devoided of KO
and targeted KI models, crucial tools to uncover the molecular roots of any physiological
or pathological process. Luckily, the eruption of site-specific endonucleases, and particularly
CRISPR technology, has empowered farm animal scientists to consider projects that could
not develop before. In this sense, the availability of genome modification in livestock species
is meant to change the way research is performed on many fields, switching from descriptive
and correlational approaches to experimental research. In this review we will provide some
guidance about how the genome can be edited by CRISPR and the possible strategies to achieve
KO or KI, paying special attention to an initially overlooked phenomenon: mosaicism. Mosaicism
is produced when the zygote´s genome edition occurs after its DNA has replicated,
and is characterized by the presence of more than two alleles in the same individual, an undesirable
outcome when attempting direct KO generation. Finally, the possible applications on different
fields of livestock research, such as reproduction or infectious diseases are discussed.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Department Reproducción Animal, INIA, 28040 Madrid, Spain
| | | |
Collapse
|
38
|
Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res 2018; 27:289-300. [PMID: 29691708 DOI: 10.1007/s11248-018-0074-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic disease with accompanying severe complications. Various animal models, mostly rodents due to availability of genetically modified lines, have been used to investigate the pathophysiology of diabetes. Using pigs for diabetic research can be beneficial because of their similarity in size, pathogenesis pathway, physiology, and metabolism with human. However, the use of pigs for diabetes research has been hampered due to only few pig models presenting diabetes symptoms. In this study, we have successfully generated insulin-deficient pigs by generating the indels of the porcine INS gene in somatic cells using CRISPR/Cas9 system followed by somatic cell nuclear transfer. First, somatic cells carrying a modified INS gene were generated using CRISPR/Cas9 system and their genotypes were confirmed by T7E1 assay; targeting efficiency was 40.4% (21/52). After embryo transfer, three live and five stillborn piglets were born. As expected, INS knockout piglets presented high blood glucose levels and glucose was detected in the urine. The level of insulin and c-peptide in the blood serum of INS knockout piglets were constant after feeding and the expression of insulin in the pancreas was absent in those piglets. This study demonstrates effectiveness of CRISPR/Cas9 system in generating novel pig models. We expect that these insulin-deficient pigs can be used in diabetes research to test the efficacy and safety of new drugs and the recipient of islet transplantation to investigate optimal transplantation strategies.
Collapse
Affiliation(s)
- Bumrae Cho
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Su Jin Kim
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Eun-Jin Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Sun Mi Ahn
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Jin Seok Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Dal-Young Ji
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea.
| |
Collapse
|
39
|
Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P. CRISPR is knocking on barn door. Reprod Domest Anim 2017; 52 Suppl 4:39-47. [DOI: 10.1111/rda.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G Alegre-Cid
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | - E Pericuesta
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | | |
Collapse
|
40
|
Choi YJ, Kim E, Reza AMMT, Hong K, Song H, Park C, Cho SK, Lee K, Prather RS, Kim JH. Recombination activating gene-2 null severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget 2017; 8:69398-69407. [PMID: 29050212 PMCID: PMC5642487 DOI: 10.18632/oncotarget.20626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
This study comparatively investigated the transcriptional, physiological, and phenotypic differences of the immune disorder between severe combined immunodeficient (SCID) mouse and pig models. We discovered that the recombination activating gene-2 (Rag-2) SCID mice, but not RAG-2 SCID pigs, showed intense, infrequent, and mild cluster of CD3+-, CD4+-, and CD8+ signals respectively, suggesting that distinct species-specific effects exist. Furthermore, the expression of six relevant genes (NFATC1, CD79B, CD2, BLNK, FOXO1, and CD40) was more downregulated than that in the Rag-2 SCID mice, which provides a partial rationale for the death of T/B cells in the lymphoid organs of RAG-2 SCID pigs but not in Rag-2 SCID mice. Further, NK cell maturation-related gene expression was significantly lower in RAG-2 SCID pigs than in Rag-2 SCID mice. Consistently, the RAG-2 SCID pigs, but not Rag-2 SCID mice, developed human induced pluripotent stem cell-derived teratomas that were the same as those of perforin/Rag-2 SCID mice. Therefore, these unexpected findings indicate the superiority of RAG-2 SCID pigs over Rag-2 SCID mice as a suitable model for investigating human diseases.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - EunSu Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Pusan National University, Miryang, Gyeongnam, Republic of Korea
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Randall S. Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Chuang CK, Tu CF, Chen CH. Generation of Mutant Pigs by Direct Pronuclear Microinjection of CRISPR/Cas9 Plasmid Vectors. Bio Protoc 2017; 7:e2321. [PMID: 34541083 DOI: 10.21769/bioprotoc.2321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 05/15/2017] [Indexed: 11/02/2022] Open
Abstract
A set of Cas9 and single guide CRISPR RNA expression vectors was constructed. Only a very simple procedure was needed to prepare specific single-guide RNA expression vectors with high target accuracy. Since the de novo zygotic transcription had been detected in mouse embryo at the 1-cell stage, the plasmid DNA vectors encoding Cas9 and GGTA1 gene specific single-guide RNAs were micro-injected into zygotic pronuclei to confirm such phenomenon in 1-cell pig embryo. Our results demonstrated that mutations caused by these CRISPR/Cas9 plasmids occurred before and at the 2-cell stage of pig embryos, indicating that besides the cytoplasmic microinjection of in vitro transcribed RNA, the pronuclear microinjection of CRISPR/Cas9 DNA vectors provided an efficient solution to generate gene-knockout pig.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, Taiwan
| | - Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, Taiwan
| | - Chien-Hong Chen
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, Taiwan.,Currenrtly: Lee Women's Hospital, Reproductive Medicine Center, Taichung City, Taiwan
| |
Collapse
|
42
|
Powell EJ, Cunnick JE, Tuggle CK. SCID pigs: An emerging large animal NK model. JOURNAL OF RARE DISEASES RESEARCH & TREATMENT 2017; 2:1-6. [PMID: 29152615 PMCID: PMC5690567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Severe Combined ImmunoDeficiency (SCID) is defined as the lack or impairment of an adaptive immune system. Although SCID phenotypes are characteristically absent of T and B cells, many such SCID cellular profiles include the presence of NK cells. In human SCID patients, functional NK cells may impact the engraftment success of life saving procedures such as bone marrow transplantation. However, in animal models, a T cell-, B cell-, NK cell+ environment provides a valuable tool for asking specific questions about the extent of the innate immune system function as well as emerging NK targeted therapies against cancer. Physiologically and immunologically the pig is more similar to the human than common rodent research animals. This review discusses why the T- B- NK+ SCID pig may offer a more relevant model for development of human SCID patient therapies as well as provide an opportunity for systematic exploration of the role of NK cells in artiodactyl immunity.
Collapse
Affiliation(s)
- Ellis J Powell
- Genetics and Genomics Graduate Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Joan E Cunnick
- Interdepartmental Microbiology Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Christopher K Tuggle
- Genetics and Genomics Graduate Program, Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|