1
|
Chen DM, Chen LD, Kouba CK, Songsasen N, Roth TL, Allen PJ, Kouba AJ. Oral administration of GnRH via a cricket vehicle stimulates spermiation in tiger salamanders (Ambystoma tigrinum). PLoS One 2024; 19:e0289995. [PMID: 39052625 PMCID: PMC11271887 DOI: 10.1371/journal.pone.0289995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/20/2023] [Indexed: 07/27/2024] Open
Abstract
More than 50% of caudates are threatened with extinction and are in need of ex-situ breeding programs to support conservation efforts and species recovery. Unfortunately, many salamander populations under human care can experience reproductive failure, primarily due to missing environmental cues necessary for breeding. Assisted reproductive technologies (ARTs) are a useful suite of techniques for overcoming or bypassing these missing environmental cues to promote breeding. Exogenous hormones are used to stimulate natural breeding behaviors or gamete expression for in-vitro fertilization or biobanking and are typically administered intramuscularly in caudates. While effective, intramuscular injection is risky to perform in smaller-bodied animals, resulting in health and welfare risks. This research investigated the spermiation response to hormone administration through a non-invasive oral bioencapsulation route using the tiger salamander (Ambystoma tigrinum) as a model species. Male salamanders were randomly rotated six weeks apart through four treatments (n = 11 males/treatment) in which animals received a resolving dose of gonadotropin-releasing hormone (GnRH) as follows: (1) Prime-Only (0.0 μg/g); (2) Low (0.25 μg/g); (3) Medium (1.0 μg/g); and (4) High (2.0 μg/g). All males were given a GnRH priming dose (0.25 μg/g) 24 hours prior to the resolving dose. Exogenous hormone was delivered inside of a cricket (Gryllodes sigillatus) that was presented as a food item by tweezers. Sperm samples were collected at 1, 3, 6, 9, 12, and 24 hours after the resolving dose and analyzed for quantity and quality. For all treatments, sperm concentration was produced in an episodic pattern over time. The Prime-Only treatment had a lower (p < 0.05) percent of sperm exhibiting normal morphology compared to treatments utilizing a resolving dose of GnRH. Overall, oral administration of GnRH is a feasible route of inducing spermiation in salamanders, yielding sperm of sufficient quantity and quality for in-vitro fertilization and biobanking efforts.
Collapse
Affiliation(s)
- Devin M. Chen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Li-Dunn Chen
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Carrie K. Kouba
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, Virginia, United States of America
| | - Terri L. Roth
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio, United States of America
| | - Peter J. Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Andrew J. Kouba
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
2
|
Otero Y, Calatayud NE, Arcia ID, Mariscal D, Samaniego D, Rodríguez D, Rodríguez K, Guerrel J, Ibáñez R, Della Togna G. Recovery and Characterization of Spermatozoa in a Neotropical, Terrestrial, Direct-Developing Riparian Frog ( Craugastor evanesco) through Hormonal Stimulation. Animals (Basel) 2023; 13:2689. [PMID: 37684953 PMCID: PMC10486684 DOI: 10.3390/ani13172689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The Vanishing Rainfrog (Craugastor evanesco) is an endemic and critically endangered frog species of Panama. It is suspected that 90% of the population has disappeared from the wild. Frogs were collected from the wild and brought to a Captive Breeding Program; however, accomplishing regular reproductive events for this species has been difficult. The objective of this study was to determine the effect of hormonal stimulation on the production and quality of C. evanesco spermatozoa, aiming to develop an efficient and safe sperm collection protocol as a tool to help reproduce this endangered species. Mature males received intra-peritoneal injections with one of six hormone treatments, including des-Gly10, D-Ala6, Pro-NHEt9-GnRH-A, Amphiplex or hCG. Urine samples were collected at 10 different time points post-injection. Quality assessments included sperm concentration, percentage motility, percentage forward progressive motility (FPM), osmolality, pH and morphology analysis. Our results indicate that the optimal treatment for the collection of highly concentrated sperm samples of C. evanesco is 4 µg/gbw GnRH, followed by Amphiplex and 2 µg/gbw GnRH as sub-optimal treatments and finally, 6 µg/gbw GnRH and 5 and 10 IU/gbw hCG as non-optimal treatments. GnRH-A at 4 μg/gbw and Amphiplex stimulated the production of samples with the highest sperm concentrations and quality, despite Amphiplex producing lower percentages of intact acrosome and tail. In contrast, hCG concentrations were not reliable inducers of sperm production, consistently showing lower concentrations, higher percentages of sperm abnormalities and more acidic spermic urine than that induced by Amphiplex and GnRH-A. Morphological assessments revealed that C. evanesco spermatozoa have a filiform shape with a large acrosome on the anterior part of an elongated head, a small midpiece and a long tail with two filaments joined together by an undulating membrane.
Collapse
Affiliation(s)
- Yineska Otero
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Natalie E. Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA;
| | - Igli D. Arcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Denise Mariscal
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Diego Samaniego
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Dionel Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Karina Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Jorge Guerrel
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Gina Della Togna
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- The Amphibian Survival Alliance, Apartado 0830-00689, Panama
| |
Collapse
|
3
|
Silla AJ, McFadden M, Byrne PG. Hormone-induced spawning of the critically endangered northern corroboree frog Pseudophryne pengilleyi. Reprod Fertil Dev 2019; 30:1352-1358. [PMID: 29694827 DOI: 10.1071/rd18011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
Fundamental knowledge of the optimal hormone concentrations required to stimulate amplexus and spawning in breeding pairs of amphibians is currently lacking, hindering our understanding of the proximate mechanisms underpinning mating behaviour. The present study investigated the effects of: (1) the dose of a gonadotropin-releasing hormone analogue (GnRH-a) administered; (2) male-female hormone administration interval; and (3) topical application of GnRH-a, on spawning success in the northern corroboree frog. Administration of GnRH-a at doses of 0.5, 1.0 and 2.0μgg-1 were highly successful, with a significantly greater proportion of hormone-treated pairs ovipositing (89-100%) compared with the 0μgg-1 treatment (22%). Of the hormone-treated pairs, those receiving 0.5μgg-1 GnRH-a exhibited the highest fertilisation success (61%). Administration of GnRH-a to males and females simultaneously (0h) was more effective than injecting males either 48 or 24h before the injection of females. Overall, administration of GnRH-a was highly successful at inducing spawning in northern corroboree frogs. For the first time, we also effectively induced spawning following the topical application of GnRH-a to the ventral pelvic region. Topical application of GnRH-a eliminates the need for specialised training in amphibian injection, and will allow assisted reproductive technologies to be adopted by a greater number of captive facilities globally.
Collapse
Affiliation(s)
- Aimee J Silla
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael McFadden
- Herpetofauna Department, Taronga Conservation Society Australia, PO Box 20, Mosman, NSW 2088, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Silla AJ, Byrne PG. The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs. Annu Rev Anim Biosci 2018; 7:499-519. [PMID: 30359086 DOI: 10.1146/annurev-animal-020518-115056] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthropogenic environmental change has led to unprecedented rates of species extinction, presenting a major threat to global biodiversity. Among vertebrates, amphibians have been most severely impacted, with an estimated 41% of species now threatened with extinction. In response to this biodiversity crisis, a moral and ethical obligation exists to implement proactive interventionist conservation actions to assist species recovery and decelerate declines. Conservation breeding programs have been successfully established for several threatened amphibian species globally, aiming to prevent species' extinction by maintaining genetically representative assurance colonies ex situ while providing individuals for population augmentation, translocation, and reestablishment in situ. Reproductive technologies have enormous potential to enhance the propagation and genetic management of threatened species. In this review, we discuss the role of reproductive technologies in amphibian conservation breeding programs and summarize technological advancements in amphibian hormone therapies, gamete storage, and artificial fertilization.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| |
Collapse
|
5
|
Calatayud NE, Stoops M, Durrant BS. Ovarian control and monitoring in amphibians. Theriogenology 2017; 109:70-81. [PMID: 29325879 DOI: 10.1016/j.theriogenology.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022]
Abstract
Amphibian evolution spans over 350 million years, consequently this taxonomic group displays a wide, complex array of physiological adaptations and their diverse modes of reproduction are a prime example. Reproduction can be affected by taxonomy, geographic and altitudinal distribution, and environmental factors. With some exceptions, amphibians can be categorized into discontinuous (strictly seasonal) and continuous breeders. Temperature and its close association with other proximate and genetic factors control reproduction via a tight relationship with circadian rhythms which drive genetic and hormonal responses to the environment. In recent times, the relationship of proximate factors and reproduction has directly or indirectly lead to the decline of this taxonomic group. Conservationists are tackling the rapid loss of species through a wide range of approaches including captive rescue. However, there is still much to be learned about the mechanisms of reproductive control and its requirements in order to fabricate species-appropriate captive environments that address a variety of reproductive strategies. As with other taxonomic groups, assisted reproductive technologies and other reproductive monitoring tools such as ultrasound, hormone analysis and body condition indices can assist conservationists in optimizing captive husbandry and breeding. In this review we discuss some of the mechanisms of ovarian control and the different tools being used to monitor female reproduction.
Collapse
Affiliation(s)
- N E Calatayud
- San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States.
| | - M Stoops
- Cincinnati Zoo & Botanical Garden, Center for Conservation and Research of Endangered Wildlife, 3400 Vine Street, Cincinnati, OH 45220, United States
| | - B S Durrant
- San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States
| |
Collapse
|