1
|
Bahri Khomami M, Shorakae S, Hashemi S, Harrison CL, Piltonen TT, Romualdi D, Tay CT, Teede HJ, Vanky E, Mousa A. Systematic review and meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Nat Commun 2024; 15:5591. [PMID: 38965226 PMCID: PMC11224312 DOI: 10.1038/s41467-024-49749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Screening for polycystic ovary syndrome (PCOS) in antenatal care is inadequate, largely owing to the lack of clarity around whether PCOS is an independent risk factor for pregnancy complications. This systematic review and meta-analysis include 104 studies and 106,690 pregnancies in women with and without PCOS from inception until 13th July 2022. We report that women with PCOS are younger and have higher body mass index (BMI) around conception and have greater gestational weight gain. The odds of miscarriage, gestational diabetes mellitus, gestational hypertension, pre-eclampsia and cesarean section are higher in women with PCOS. The increased odds of adverse outcomes in PCOS remain significant when age and BMI are matched and when analyses are restricted to high-quality studies. This work informed the recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome, emphasizing that PCOS status should be captured in all women who are planning to, or have recently become pregnant to facilitate prevention of adverse outcomes and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Mahnaz Bahri Khomami
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Soulmaz Shorakae
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | | | - Cheryce L Harrison
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Endocrinology and Diabetes Units, Monash Health, Melbourne, VIC, Australia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Daniela Romualdi
- Department of Woman and Child Health and Public Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Chau Thien Tay
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Endocrinology and Diabetes Units, Monash Health, Melbourne, VIC, Australia
| | - Eszter Vanky
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Li X, Hao Y, Chen D, Ji D, Zhu W, Zhu X, Wei Z, Cao Y, Zhang Z, Zhou P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: a pilot study. Hum Reprod 2021; 36:2020-2034. [PMID: 33974705 DOI: 10.1093/humrep/deab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/06/2021] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION What is the potential of applying non-invasive preimplantation genetic testing (niPGT) for chromosome abnormalities in blastocysts reported with a mosaic trophectoderm (TE) biopsy? SUMMARY ANSWER niPGT of cell-free DNA in blastocyst culture medium exhibited a good diagnostic performance in putative mosaic blastocysts. WHAT IS KNOWN ALREADY Advances in niPGT have demonstrated the potential reliability of cell-free DNA as a resource for genetic assessment, but information on mosaic embryos is scarce because the mosaicism may interfere with niPGT. In addition, the high incidence of mosaicism reported in the context of PGT and the viability of mosaic blastocysts raise questions about whether mosaicism really exists. STUDY DESIGN, SIZE, DURATION The study was performed between May 2020 and July 2020. First, clinical data collected by a single-center over a 6-year period on PGT for chromosome aneuploidies (PGT-A) or chromosomal structural rearrangements (PGT-SR) were analyzed. After confirming the reliability of niPGT, 41 blastocysts classified as mosaics by trophectoderm (TE) biopsy were re-cultured. The chromosomal copy number of the blastocyst embryo (BE, the gold standard), TE re-biopsy, and corresponding cell-free DNA in the culture medium was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS Data on patients enrolled for PGT at a single center from 2014 to 2019 were collected and the cycles with available putative mosaic blastocysts were evaluated. To verify the diagnostic validity of niPGT, eight aneuploid blastocysts were thawed and re-cultured for 14-18 h. The concordance of the niPGT diagnosis results and the whole blastocyst testing results was analyzed. Forty-one blastocysts reported as mosaics from 22 patients were included and re-cultured for 14-18 h. The genetic material of the BE, TE re-biopsy, and corresponding cell-free DNA in the culture medium was amplified using multiple annealing and looping-based amplification cycles. The karyotype data from niPGT and TE re-biopsy were compared with that from the whole blastocyst, and the efficiency of niPGT was assessed. MAIN RESULTS AND THE ROLE OF CHANCE Data on 3738 blastocysts from 785 PGT-A or PGT-SR cycles of 677 patients were collected. According to the TE biopsy report, of the 3662 (98%) successfully amplified samples, 24 (0.6%) yielded no results, 849 (23.2%) were euploid, 2245 (61.3%) were aneuploid, and 544 (14.9%) were mosaic. Sixty patients without euploid blastocysts opted for a single mosaic blastocyst transfer, and 30 (50%) of them obtained a clinical pregnancy. With the BE chromosome copy number as the gold standard, niPGT and TE re-biopsy showed reliable detection ability and diagnostic efficiency in eight putative aneuploid blastocysts. Of the 41 putative mosaic blastocysts re-cultured and re-tested, 35 (85.4%) showed euploid BE results. All but two of the blastocysts previously diagnosed with segmental chromosomal mosaic were actually euploid. In addition, all blastocysts previously classified as low degree (20-50%) mosaics were identified as euploid by BE PGT, whereas four of the six putative high degree (50-80%) mosaic blastocysts showed chromosomal abnormalities. The raw concordance rates of spent culture medium (SCM) and TE re-biopsies compared with BE were 74.4% and 82%, respectively, in terms of overall ploidy and 96.2% and 97.6%, respectively, per single chromosome when considering all degree mosaic results as true positives. However, when we set a mosaicism identification threshold of 50%, the concordance rates of SCM and TE re-biopsies compared with BE were 87.2% and 85% at the overall ploidy level and 98.8% and 98.3% at the chromosomal level, respectively. At the full ploidy level, the sensitivity and false negative rates for niPGT were 100% and 0, respectively. After adjustment of the threshold for mosaicism, the specificity of niPGT increased from 69.7% to 84.8% in terms of overall ploidy and from 96.1% to 98.9% at the chromosomal level. LIMITATIONS, REASONS FOR CAUTION The primary limitation of this study is the small sample size, which decreases the strength of our conclusions. If possible, identifying the clinical outcome of niPGT on reassessed mosaic blastocysts would be further progress in this field. WIDER IMPLICATIONS OF THE FINDINGS This study is the first to explore the practicability of niPGT in diagnostic reassessment of putative mosaicism. The present study provides a novel opportunity for patients with only mosaic blastocysts and no euploid blastocysts, regardless of the technical or biological basis of mosaicism. Employing niPGT after 14-18 h of re-culturing might be a superior option for the best use of blastocysts because of its minimally invasive nature. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from National Key Technology Research and Development Program of China (No. 2017YFC1002004), the Central Guiding the Science and Technology Development of the Local (2018080802D0081) and College Natural Science Project of Anhui Province (KJ2019A0287). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dawei Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Wanbo Zhu
- Affiliated Anhui Provincial Hospital of Anhui Medical University, Anhui, China
| | - Xiaoqian Zhu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Li X, Mu Y, Elshewy N, Ding D, Zou H, Chen B, Chen C, Wei Z, Cao Y, Zhou P, Zhang Z. Comparison of IVF and IVM outcomes in the same patient treated with a modified IVM protocol along with an oocytes-maturing system containing melatonin: A pilot study. Life Sci 2021; 264:118706. [PMID: 33152350 DOI: 10.1016/j.lfs.2020.118706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
AIM To compare embryonic developmental competence and clinical outcomes of oocytes matured in vivo (IVF oocytes) and those matured in vitro (IVM oocytes) from the same IVM/IVF cycles, and to analyze the clinical efficiency of a melatonin-supplemented in vitro maturation system combined with a modified IVM/IVF protocol. MAIN METHODS We randomly recruited 22 patients undergoing IVM/IVF treatment protocol in our medical centre. The fertilization, cleavage and blastocyst formation rates, as well as clinical pregnancy, implantation and live birth/ongoing pregnancy rates were analysed and compared between IVF and IVM oocytes. We evaluated mitochondrial function indicators by fluorescence staining and confocal microscopy, including mitochondrial membrane potential, reactive oxygen species and calcium (Ca2+) levels in 15 IVF and 15 IVM oocytes. KEY FINDINGS There were no significant differences in fertilization or blastocyst formation rates between the IVF and IVM groups, whereas the cleavage rate was significantly higher in the IVF versus IVM group (100% vs 93.4 ± 10.9%, p = 0.03). There were no significant differences in the clinical pregnancy, implantation or live birth/ongoing pregnancy rates between the two groups. The cumulative clinical pregnancy and ongoing pregnancy/live birth rate per pick-up oocyte in the IVM/IVF treatment cycles were 68.2% (15/22) and 54.5% (12/22), respectively. The reactive oxygen species and Ca2+ levels were significantly increased, and mitochondrial membrane potential was significantly decreased, in IVM compared with IVF oocytes. SIGNIFICANCE The modified IVM/IVF protocol can be effectively applied to the treatment of some indicated patients and achieve ideal clinical outcomes, even though the developmental potential of IVM oocytes may not be as high as IVF oocytes.
Collapse
Affiliation(s)
- Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yaoqin Mu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Nagwa Elshewy
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Change Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|