1
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
2
|
Lopez I, Truskey GA. Multi-cellular engineered living systems to assess reproductive toxicology. Reprod Toxicol 2024; 127:108609. [PMID: 38759876 PMCID: PMC11179964 DOI: 10.1016/j.reprotox.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Toxicants and some drugs can negatively impact reproductive health. Many toxicants haven't been tested due to lack of available models. The impact of many drugs taken during pregnancy to address maternal health may adversely affect fetal development with life-long effects and clinical trials do not examine toxicity effects on the maternal-fetal interface, requiring indirect assessment of safety and efficacy. Due to current gaps in reproductive toxicological knowledge and limitations of animal models, multi-cellular engineered living systems may provide solutions for modeling reproductive physiology and pathology for chemical and xenobiotic toxicity studies. Multi-cellular engineered living systems, such as microphysiological systems (MPS) and organoids, model of functional units of tissues. In this review, we highlight the key functions and structures of human reproductive organs and well-known representative toxicants afflicting these systems. We then discuss current approaches and specific studies where scientists have used MPS or organoids to recreate in vivo markers and cellular responses of the female and male reproductive system, as well as pregnancy-associated placenta formation and embryo development. We provide specific examples of organoids and organ-on-chip that have been used for toxicological purposes with varied success. Finally, we address current issues related to usage of MPS, emerging techniques for improving upon these complications, and improvements needed to make MPS more capable in assessing reproductive toxicology. Overall, multi-cellular engineered living systems have considerable promise to serve as a suitable, alternative reproductive biological model compared to animal studies and 2D culture.
Collapse
Affiliation(s)
- Isabella Lopez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
3
|
Sanguansook P, Martínez-López C, Izquierdo-Rico MJ, Martínez-Cáceres C, López-Orozco M, Chatdarong K, García-Vázquez FA. Development of decellularization protocols for female cat reproductive organs. Res Vet Sci 2024; 173:105257. [PMID: 38636324 DOI: 10.1016/j.rvsc.2024.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.
Collapse
Affiliation(s)
- Phakjira Sanguansook
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Cristina Martínez-López
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain; Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain
| | | | - Marina López-Orozco
- Departamento de Producción Animal, Facultad de Veterinaria, Campus de Excelencia Internacional para la Educación Superior y la Investigación "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Francisco Alberto García-Vázquez
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain; Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
4
|
Jin Y, Sun Q, Ma R, Li R, Qiao R, Li J, Wang L, Hu Y. The trend of allogeneic tendon decellularization: literature review. Cell Tissue Bank 2024; 25:357-367. [PMID: 37355504 DOI: 10.1007/s10561-023-10097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Tendon injuries repair is a significant burden for orthopaedic surgeons. Finding a proper graft material to repair tendon is one of the main challenges in orthopaedics, for which the requirement of substitute for tendon repair would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon increasingly represents an interesting approach to treat tendon injuries and several articles have investigated the approaches of tendon decellularization. To understand the outcomes of the the approaches of tendon decellularization on effect of tendon transplantation, a literature review was performed. This review was conducted by searching in Pubmed and Embase and 64 studies were included in this study. The findings revealed that the common approaches to decellularize tendon include chemical, physical, and enzymatic decellularization methods or their combination. With the development of tissue engineering, researchers also put forward new theories such as automatic acellular machine, 3D printing technology to manufacture acellular scaffold.
Collapse
Affiliation(s)
- Yangyang Jin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rongxing Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruifeng Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jikai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Yongcheng Hu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300000, China.
| |
Collapse
|
5
|
León-Félix CM, Maranhão AQ, Amorim CA, Lucci CM. Optimizing Decellularization of Bovine Ovarian Tissue: Toward a Transplantable Artificial Ovary Scaffold with Minimized Residual Toxicity and Preserved Extracellular Matrix Morphology. Cells Tissues Organs 2024; 213:413-423. [PMID: 38359805 DOI: 10.1159/000537838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION The decellularized extracellular matrix (dECM) from ovarian tissue could be the best scaffold for the development of a transplantable artificial ovary. Typically, dECM from ovarian tissue has been obtained using sodium dodecyl sulfate (SDS), at a concentration of 1% for 24 h. However, SDS can leave residues in the tissue, which may be toxic to the seeded cells. This study aimed to obtain dECM from bovine ovarian tissue using SDS and NaOH at a minimum concentration in the shortest incubation time. METHODS The respective SDS and NaOH concentrations investigated were 1% and 0.2 m; 0.5% and 0.1 m; 0.1% and 0.02 m; and 0.05% and 0.01 m, with 24-, 12-, and 6-h incubation periods. After the incubation time, the tissue was washed in 50 mL of distilled water for 6 h. RESULTS Histological analysis confirmed decellularization and showed the conservation of collagen fibers in all samples following treatment. Furthermore, the lowest SDS and NaOH concentrations that showed no DNA remaining during electrophoresis analysis were 0.1% and 0.02 m when incubated for 24 and 12 h. DNA quantification resulted in <0.2 ng DNA/mg ovarian tissue using these protocols. Additionally, the coculture of dECM (obtained by 0.1% SDS and 0.02 m NaOH for 12 h) with ovarian cells showed that there was no toxic effect for the cells for up to 72 h. CONCLUSION The protocol involving 0.1% SDS and 0.02 m NaOH for 12-h incubation decellularizes bovine ovarian tissue, generating a dECM that preserves the native ECM morphology and is nontoxic to ovarian cells.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil,
| | - Andrea Q Maranhão
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Christiani A Amorim
- Department of Gynecology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carolina M Lucci
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
6
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Khaleghi S, Eivazkhani F, Tavana S, Moini A, Novin MG, Stoyan P, Nazarian H, Fathi R. Follicular reconstruction and neo-oogenesis in xenotransplantation of human ovarian isolated cells derived from chemotherapy-induced POF patients. J Biol Eng 2023; 17:70. [PMID: 37986177 PMCID: PMC10662631 DOI: 10.1186/s13036-023-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Developing new strategies to restore fertility in patients with chemotherapy-induced Premature Ovarian Failure (Chemo-POF) is important. We aimed to construct an Artificial Ovary (AO) by seeding Human Ovarian Cortical Cells (HOCCs) into Human ovarian Decellularized Cortical Tissue (DCT). We assessed the AO's ability to produce new ovarian follicles following xenotransplantation to NMRI mice. MATERIAL AND METHODS The DCTs were prepared, and cell removal was confirmed through DNA content, MTT assay, DAPI and H&E staining. Next, HOCCs were isolated from both Chemo-POF and Trans (as a control group) ovarian patients. The HOCCs were characterized using immunostaining (FRAGILIS, Vimentin, and Inhibin α) and real time PCR (DDX4, STELLA, FRAGILIS, Vimentin, FSH-R, KI67) assays. The HOCCs were then seeded into the DCTs and cultured for one week to construct an AO, which was subsequently xenotransplanted into the mice. The existence of active follicles within the AO was studied with H&E and immunofluorescence (GDF9) staining, Real-time PCR (GDF9, ZP3) and hormone analysis (Estradiol, FSH and AMH). RESULTS The results of gene expression and immunostaining showed that 85-86% of the isolated cells from both Trans and Chemo-POF groups were positive for vimentin, while 2-5% were granulosa cells and OSCs were less than 3%. After xenotransplantation, histological study confirmed the presence of morphologically healthy reconstructed human ovarian follicles. Additionally, immunofluorescence staining of GDF9 and hormonal assay confirmed the presence of secretory-active follicles on the AO. CONCLUSION Our findings demonstrate that an artificial ovary produced by seeding HOCCs on DCT can support HOCCs proliferation as well as neo-oogenesis, and enable sex hormone secretion following xenotransplantation.
Collapse
Affiliation(s)
- Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Royan Institute of Reproductive Biomedicine, ACECR, Tehran, Iran
- Breast Disease Research Center (BDRC), Tehran University of Medical Science, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Petkov Stoyan
- Platform Degenerative Diseases, German Primate Center, GmbH, Leibniz Institute for Primate Research, Göttingen, 37077, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, 37077, Germany
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Dipali SS, King CD, Rose JP, Burdette JE, Campisi J, Schilling B, Duncan FE. Proteomic quantification of native and ECM-enriched mouse ovaries reveals an age-dependent fibro-inflammatory signature. Aging (Albany NY) 2023; 15:10821-10855. [PMID: 37899138 PMCID: PMC10637783 DOI: 10.18632/aging.205190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The ovarian microenvironment becomes fibrotic and stiff with age, in part due to increased collagen and decreased hyaluronan. However, the extracellular matrix (ECM) is a complex network of hundreds of proteins, glycoproteins, and glycans which are highly tissue specific and undergo pronounced changes with age. To obtain an unbiased and comprehensive profile of age-associated alterations to the murine ovarian proteome and ECM, we used a label-free quantitative proteomic methodology. We validated conditions to enrich for the ECM prior to proteomic analysis. Following analysis by data-independent acquisition (DIA) and quantitative data processing, we observed that both native and ECM-enriched ovaries clustered separately based on age, indicating distinct age-dependent proteomic signatures. We identified a total of 4,721 proteins from both native and ECM-enriched ovaries, of which 383 proteins were significantly altered with advanced age, including 58 ECM proteins. Several ECM proteins upregulated with age have been associated with fibrosis in other organs, but to date their roles in ovarian fibrosis are unknown. Pathways regulating DNA metabolism and translation were downregulated with age, whereas pathways involved in ECM remodeling and immune response were upregulated. Interestingly, immune-related pathways were upregulated with age even in ECM-enriched ovaries, suggesting a novel interplay between the ECM and the immune system. Moreover, we identified putative markers of unique immune cell populations present in the ovary with age. These findings provide evidence from a proteomic perspective that the aging ovary provides a fibroinflammatory milieu, and our study suggests target proteins which may drive these age-associated phenotypes for future investigation.
Collapse
Affiliation(s)
- Shweta S. Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
9
|
Singh G, Satpathi S, Gopala Reddy BV, Singh MK, Sarangi S, Behera PK, Nayak B. Impact of various detergent-based immersion and perfusion decellularization strategies on the novel caprine pancreas derived extracellular matrix scaffold. Front Bioeng Biotechnol 2023; 11:1253804. [PMID: 37790257 PMCID: PMC10544968 DOI: 10.3389/fbioe.2023.1253804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Limited availability of the organs donors has facilitated the establishment of xenogeneic organ sources for transplantation. Numerous studies have decellularized several organs and assessed their implantability in order to provide such organs. Among all the decellularized organs studies for xenotransplantation, the pancreas has garnered very limited amount of research. The presently offered alternatives for pancreas transplantation are unable to liberate patients from donor dependence. The rat and mice pancreas are not of an accurate size for transplantation but can only be used for in-vitro studies mimicking in-vivo immune response in humans, while the porcine pancreas can cause zoonotic diseases as it carries porcine endogenous retrovirus (PERV- A/B/C). Therefore, we propose caprine pancreas as a substitute for these organs, which not only reduces donor dependence but also poses no risk of zoonosis. Upon decellularization the extracellular matrix (ECM) of different tissues responds differently to the detergents used for decellularization at physical and physiological level; this necessitates a comprehensive analysis of each tissue independently. This study investigates the impact of decellularization by ionic (SDS and SDC), non-ionic (Triton X-100 and Tween-20), and zwitterionic detergents (CHAPS). All these five detergents have been used to decellularize caprine pancreas via immersion (ID) and perfusion (PD) set-up. In this study, an extensive comparison of these two configurations (ID and PD) with regard to each detergent has been conducted. The final obtained scaffold with each set-up has been evaluated for the left-over cytosolic content, ECM components like sGAG, collagen, and fibronectin were estimated via Prussian blue and Immunohistochemical staining respectively, and finally for the tensile strength and antimicrobial activity. All the detergents performed consistently superior in PD than in ID. Conclusively, PD with SDS, SDC, and TX-100 successfully decellularizes caprine pancreatic tissue while retaining ECM architecture and mechanical properties. This research demonstrates the viability of caprine pancreatic tissue as a substitute scaffold for porcine organs and provides optimal decellularization protocol for this xenogeneic tissue. This research aims to establish a foundation for further investigations into potential regenerative strategies using this ECM in combination with other factors.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bora Venu Gopala Reddy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Manish Kumar Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samchita Sarangi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
10
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
11
|
Francés-Herrero E, Lopez R, Campo H, de Miguel-Gómez L, Rodríguez-Eguren A, Faus A, Pellicer A, Cervelló I. Advances of xenogeneic ovarian extracellular matrix hydrogels for in vitro follicle development and oocyte maturation. BIOMATERIALS ADVANCES 2023; 151:213480. [PMID: 37267748 DOI: 10.1016/j.bioadv.2023.213480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Research aimed at preserving female fertility is increasingly using bioengineering techniques to develop new platforms capable of supporting ovarian cell function in vitro and in vivo. Natural hydrogels (alginate, collagen, and fibrin) have been the most exploited approaches; however they are biologically inert and/or biochemically simple. Thus, establishing a suitable biomimetic hydrogel from decellularized ovarian cortex (OC) extracellular matrix (OvaECM) could provide a complex native biomaterial for follicle development and oocyte maturation. The objectives of this work were (i) to establish an optimal protocol to decellularize and solubilize bovine OC, (ii) to characterize the histological, molecular, ultrastructural, and proteomic properties of the resulting tissue and hydrogel, and (iii) to assess its biocompatibility and adequacy for murine in vitro follicle growth (IVFG). Sodium dodecyl sulfate was identified as the best detergent to develop bovine OvaECM hydrogels. Hydrogels added into standard media or used as plate coatings were employed for IVFG and oocyte maturation. Follicle growth, survival, hormone production, and oocyte maturation and developmental competence were evaluated. OvaECM hydrogel-supplemented media best supported follicle survival, expansion, and hormone production, while the coatings provided more mature and competent oocytes. Overall, the findings support the xenogeneic use of OvaECM hydrogels for future human female reproductive bioengineering.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rosalba Lopez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVI Roma Parioli, IVI-RMA Global, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
12
|
Izadpanah M, Rahbarghazi R, Seghinsara AM, Abedelahi A. Novel Approaches Used in Ovarian Tissue Transplantation for Fertility Preservation: Focus on Tissue Engineering Approaches and Angiogenesis Capacity. Reprod Sci 2023; 30:1082-1093. [PMID: 35962303 DOI: 10.1007/s43032-022-01048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Due to the impact of the modern lifestyle, female infertility has been reduced because of different reasons. For example, in combined chemotherapeutic therapies, a small fraction of cancer survivors has faced different post-complications and side effects such as infertility. Besides, in modern society, delayed age of childbearing has also affected fertility. Nowadays, ovarian tissue cryopreservation and transplantation (OTC/T) is considered one of the appropriate strategies for the restoration of ovarian tissue and bioactivity in patients with the loss of reproductive function. In this regard, several procedures have been considered to improve the efficacy and safety of OTT. Among them, a surgical approach is used to transplant ovaries into the optimal sites, but the existence of ischemic changes and lack of appropriate revascularization can lead to bulk follicular atresia. Besides, the role of OTC/T is limited in women of advanced maternal age undergoing lifesaving chemo-radiation. As a correlate, the development of de novo approaches with efficacious regenerative outcomes is highly welcomed. Tissue engineering shows high therapeutic potentialities to restore fertility in males and females using the combination of biomaterials, cells, and growth factors. Unfortunately, most synthetic and natural materials are at the experimental stage and only the efficacy has been properly evaluated in limited cases. Along with these descriptions, strategies associated with the induction of angiogenesis in transplanted ovaries can diminish the injuries associated with ischemic changes. In this review, the authors tried to summarize recent techniques, especially tissue engineering approaches for improving ovarian function and fertility by focusing on angiogenesis and neovascularization.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran.
| |
Collapse
|
13
|
Izadpanah M, Del Bakhshayesh AR, Bahroudi Z, Seghinsara AM, Beheshti R, Mahdipour M, Zarnaghi MR, Hassanpour P, Mardi N, Rahbarghazi R, Abedelahi A. Melatonin and endothelial cell-loaded alginate-fibrin hydrogel promoted angiogenesis in rat cryopreserved/thawed ovaries transplanted to the heterotopic sites. J Biol Eng 2023; 17:23. [PMID: 36978096 PMCID: PMC10053723 DOI: 10.1186/s13036-023-00343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Ischemic niche can promote follicular atresia following the transplantation of cryopreserved/thawed ovaries to the heterotopic sites. Thus, the promotion of blood supply is an effective strategy to inhibit/reduce the ischemic damage to ovarian follicles. Here, the angiogenic potential of alginate (Alg) + fibrin (Fib) hydrogel enriched with melatonin (Mel) and CD144+ endothelial cells (ECs) was assessed on encapsulated cryopreserved/thawed ovaries following transplantation to heterotopic sites in rats. METHODS Alg + Fib hydrogel was fabricated by combining 2% (w/v) sodium Alg, 1% (w/v) Fib, and 5 IU thrombin at a ratio of 4: 2: 1, respectively. The mixture was solidified using 1% CaCl2. Using FTIR, SEM, swelling rate, and biodegradation assay, the physicochemical properties of Alg + Fib hydrogel were evaluated. The EC viability was examined using an MTT assay. Thirty-six adult female rats (aged between 6 and 8 weeks) with a normal estrus cycle were ovariectomized and enrolled in this study. Cryopreserved/thawed ovaries were encapsulated in Alg + Fib hydrogel containing 100 µM Mel + CD144+ ECs (2 × 104 cells/ml) and transplanted into the subcutaneous region. Ovaries were removed after 14 days and the expression of Ang-1, and Ang-2 was monitored using real-time PCR assay. The number of vWF+ and α-SMA+ vessels was assessed using IHC staining. Using Masson's trichrome staining, fibrotic changes were evaluated. RESULTS FTIR data indicated successful interaction of Alg with Fib in the presence of ionic cross-linker (1% CaCl2). Data confirmed higher biodegradation and swelling rates in Alg + Fib hydrogel compared to the Alg group (p < 0.05). Increased viability was achieved in encapsulated CD144+ ECs compared to the control group (p < 0.05). IF analysis showed the biodistribution of Dil+ ECs within hydrogel two weeks after transplantation. The ratio of Ang-2/Ang-1 was statistically up-regulated in the rats that received Alg + Fib + Mel hydrogel compared to the control-matched groups (p < 0.05). Based on the data, the addition of Mel and CD144+ ECs to Alg + Fib hydrogel reduced fibrotic changes. Along with these changes, the number of vWF+ and α-SMA+ vessels was increased in the presence of Mel and CD144+ ECs. CONCLUSIONS Co-administration of Alg + Fib with Mel and CD144+ ECs induced angiogenesis toward encapsulated cryopreserved/thawed ovarian transplants, resulting in reduced fibrotic changes.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Rahim Beheshti
- Department of Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Rezaii Zarnaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran.
| |
Collapse
|
14
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
15
|
Assessing the biocompatibility of bovine tendon scaffold, a step forward in tendon tissue engineering. Cell Tissue Bank 2023; 24:11-24. [PMID: 35596907 DOI: 10.1007/s10561-022-10012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Tendon is a collagen-enriched, tough, and intricately arranged connective tissue that connects muscle to the bone and transmits forces, resulting in joint movement. High mechanical demands can affect normal tissues and may lead to severe disorders, which usually require replacement of the damaged tendon. In recent decades, various decellularization methods have been studied for tissue engineering applications. One of the major challenges in tendon decellularization is preservation of the tendon extracellular matrix (ECM) architecture to maintain natural tissue characteristics. The aim of the present study was to create a decellularized bovine Achilles tendon scaffold to investigate its cytocompatibility with seeded hAd-MSCs (human adipose derived-mesenchymal stem cells) and blastema tissue in vitro. Here, we describe a reliable procedure to decellularize bovine Achilles tendon using a combination of physical and chemical treatments including repetitive freeze-thaw cycles and the ionic detergent SDS, respectively. The decellularization effectiveness and cytocompatibility of the tendon scaffolds were verified by histological studies and scanning electron microscopy for up to 30 days after culture. Histological studies revealed hAd-MSC attachment and penetration into the scaffolds at 5, 10, 15 and 20 days of culture. However, a decrease in cell number was observed on days 25 and 30 after culture in vitro. Moreover, migration of the blastema tissue cells into the scaffold were shown at 10 to 25 days post culture, however, destruction of the scaffolds and reduction in cell number were observed on 30th day after culture. Our results suggest that this decellularization protocol is an effective and biocompatible procedure which supports the maintenance and growth of both hAd-MSCs and blastema cells, and thus might be promising for tendon tissue engineering.
Collapse
|
16
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
17
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
18
|
Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, Rahbarghazi R, Mahdipour M. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes 2022; 15:346. [DOI: 10.1186/s13104-022-06233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Objective:
Recently, the decellularization technique is introduced as one of the tissue engineering procedures for the treatment of various deficiencies. Here, we aimed to assess the dynamic activity of CCs and HUVECs within decellularized bovine ovarian tissue transplanted subcutaneously in rats. Ovarian tissue was decellularized using a cocktail consisting of different chemicals, and the efficiency of decellularization was assessed using hematoxylin-eosin and DAPI staining. The cell survival was evaluated using an LDH leakage assay. Thereafter, decellularized samples were recellularized using HUVECs and CCs, encapsulated inside alginate (1.2%)-gelatin, (1%) hydrogel, and transplanted subcutaneously to rats. The existence of CD31- and estrogen-positive cells was assessed using immunohistochemistry staining.
Results:
Bright-field imaging and DAPI staining revealed the lack of nuclei with naive matrix structure in ovarian tissue subjected to decellularization protocol. SEM imaging revealed a normal matrix in decellularized ovaries. LDH assay showed a lack of cytotoxicity for CCs after 7-days compared to the control group. Immunohistochemistry staining showed both CD31- and estrogen-positive cells in CCs + HUVECs compared to the CCs group. CD31 cells appeared with flattened morphology aligned with matrix fibers. The existence of estrogen and CD31 positive cells showed the efficiency of decellularized ovarian tissue to restore cellular function and activity.
Collapse
|
19
|
Zivari-Ghader T, Dolati S, Mehdizadeh A, Davaran S, Rashidi MR, Yousefi M. Recent scaffold-based tissue engineering approaches in premature ovarian failure treatment. J Tissue Eng Regen Med 2022; 16:605-620. [PMID: 35511799 DOI: 10.1002/term.3306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
Recently, tissue engineering and regenerative medicine have received significant attention with outstanding advances. The main scope of this technology is to recover the damaged tissues and organs or to maintain and improve their function. One of the essential fields in tissue engineering is scaffold designing and construction, playing an integral role in damaged tissues reconstruction and repair. However, premature ovarian failure (POF) is a disorder causing many medical and psychological problems in women. POF treatment using tissue engineering and various scaffold has recently made tremendous and promising progress. Due to the importance of the subject, we have summarized the recently examined scaffolds in the treatment of POF in this review.
Collapse
Affiliation(s)
- Tayyebeh Zivari-Ghader
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Francés-Herrero E, Rodríguez-Eguren A, Gómez-Álvarez M, de Miguel-Gómez L, Ferrero H, Cervelló I. Future Challenges and Opportunities of Extracellular Matrix Hydrogels in Female Reproductive Medicine. Int J Mol Sci 2022; 23:3765. [PMID: 35409119 PMCID: PMC8998701 DOI: 10.3390/ijms23073765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioengineering and reproductive medicine have progressed shoulder to shoulder for several decades. A key point of overlap is the development and clinical translation of technologies to support reproductive health, e.g., scaffold-free constructs, polymeric scaffolds, bioprinting or microfluidics, and hydrogels. Hydrogels are the focus of intense study, and those that are derived from the extracellular matrix (ECM) of reproductive tissues and organs are emerging as promising new players given their results in pre-clinical models. This literature review addresses the recent advances in the use of organ-specific ECM hydrogels in reproductive medicine, considering the entire female reproductive tract. We discuss in-depth papers describing the development of ECM hydrogels, their use in in vitro models, and their in vivo application in preclinical studies. We also summarize the functions of hydrogels, including as grafts, carriers for cell transplantation, or drug depots, and present the potential and possible scope for use of ECM hydrogels in the near future based on recent scientific advances.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Adolfo Rodríguez-Eguren
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - María Gómez-Álvarez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Lucía de Miguel-Gómez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Hortensia Ferrero
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Irene Cervelló
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
21
|
Narciso M, Ulldemolins A, Júnior C, Otero J, Navajas D, Farré R, Gavara N, Almendros I. Novel Decellularization Method for Tissue Slices. Front Bioeng Biotechnol 2022; 10:832178. [PMID: 35356779 PMCID: PMC8959585 DOI: 10.3389/fbioe.2022.832178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies.
Collapse
Affiliation(s)
- Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- *Correspondence: Isaac Almendros,
| |
Collapse
|
22
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
23
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
24
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
25
|
Functional survey of decellularized tissues transplantation for infertile females. Cell Tissue Bank 2021; 23:407-415. [PMID: 34806123 DOI: 10.1007/s10561-021-09979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Numbers of women worldwide face infertility, which will have a significant impact on a couple's life. As a result, assisting with the treatment of these individuals is seen as a critical step. Successful births following uterus and ovary donation have been reported in recent. When immunosuppressive drugs are used in patients who receive donated tissues, there are always problems with the drugs' side effects. In recent years, tissue engineering has mainly been successful in treating infertility using decellularization techniques. Engineered uterus and ovary prevent immunological reactions and do not require immunosuppressive drugs. The most important aspect of using decellularized tissue is its proper function after transplantation. These tissues must be able to produce follicles, secrete hormones and cause pregnancy. This study aimed to investigate research on decellularized tissues and transplanted into the female reproductive system. In this study, just tissues that, after transplantation, have the proper function for fertility were investigated.
Collapse
|
26
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
27
|
Sistani MN, Zavareh S, Valujerdi MR, Salehnia M. Characteristics of a decellularized human ovarian tissue created by combined protocols and its interaction with human endometrial mesenchymal cells. Prog Biomater 2021; 10:195-206. [PMID: 34482521 DOI: 10.1007/s40204-021-00163-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
The present study makes assessments by analyzing the efficacy of combined decellularization protocol for human ovarian fragments. Tissues were decellularized by freeze-thaw cycles, and treated with Triton X-100 and four concentrations (0.1, 0.5, 1 and 1.5%) of sodium dodecyl sulfate (SDS) at two exposure times. The morphology and DNA content of decellularized tissues were analyzed, and the group with better morphology and lower DNA content was selected for further assessments. The Acridine orange, Masson's trichrome, Alcian blue, and Periodic Acid-Schiff staining were used for extracellular matrix (ECM) evaluation. The amount of collagen types I and IV, glycosaminoglycans (GAGs), and elastin was quantified by Raman spectroscopy. The fine structure of the scaffold by scanning electron microscopy was studied. The endometrial mesenchymal cells were seeded onto decellularized scaffold by centrifugal method and cultured for 7 days. After 72 h the treated group with 0.5% SDS showed well-preserved ECM morphology with the minimum level of DNA (2.23% ± 0.08). Raman spectroscopy analysis confirmed that, the amount of ECM components was not significantly decreased in the decellularized group (P < 0.001) in comparison with native control. The electron micrographs demonstrated that the porosity and structure of ECM fibers in the decellularized group was similar to native ovary. The endometrial mesenchymal cells were attached and penetrated into the decellularized scaffold. In conclusion this combined protocol was an effective method to decellularize human ovarian tissue with high preservation of ECM contents, and human endometrial mesenchymal cells which successfully interacted with this created scaffold.
Collapse
Affiliation(s)
- Maryam Nezhad Sistani
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX: 14115-111, Tehran, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | - Mojtaba Rezazadeh Valujerdi
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX: 14115-111, Tehran, Iran.
| |
Collapse
|
28
|
Image-Based Method to Quantify Decellularization of Tissue Sections. Int J Mol Sci 2021; 22:ijms22168399. [PMID: 34445106 PMCID: PMC8395145 DOI: 10.3390/ijms22168399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
Tissue decellularization is typically assessed through absorbance-based DNA quantification after tissue digestion. This method has several disadvantages, namely its destructive nature and inadequacy in experimental situations where tissue is scarce. Here, we present an image processing algorithm for quantitative analysis of DNA content in (de)cellularized tissues as a faster, simpler and more comprehensive alternative. Our method uses local entropy measurements of a phase contrast image to create a mask, which is then applied to corresponding nuclei labelled (UV) images to extract average fluorescence intensities as an estimate of DNA content. The method can be used on native or decellularized tissue to quantify DNA content, thus allowing quantitative assessment of decellularization procedures. We confirm that our new method yields results in line with those obtained using the standard DNA quantification method and that it is successful for both lung and heart tissues. We are also able to accurately obtain a timeline of decreasing DNA content with increased incubation time with a decellularizing agent. Finally, the identified masks can also be applied to additional fluorescence images of immunostained proteins such as collagen or elastin, thus allowing further image-based tissue characterization.
Collapse
|
29
|
Padma AM, Alsheikh AB, Song MJ, Akouri R, Akyürek LM, Oltean M, Brännström M, Hellström M. Immune response after allogeneic transplantation of decellularized uterine scaffolds in the rat. Biomed Mater 2021; 16. [PMID: 33946053 DOI: 10.1088/1748-605x/abfdfe] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Data on how the immune system reacts to decellularized scaffolds after implantation is scarce and difficult to interpret due to many heterogeneous parameters such as tissue-type match, decellularization method and treatment application. The engraftment of these scaffolds must prove safe and that they remain inert to the recipient's immune system to enable successful translational approaches and potential future clinical evaluation. Herein, we investigated the immune response after the engraftment of three decellularized scaffold types that previously showed potential to repair a uterine injury in the rat. Protocol (P) 1 and P2 were based on Triton-X100 and generated scaffolds containing 820 ng mg-1and 33 ng mg-1donor DNA per scaffold weight, respectively. Scaffolds obtained with a sodium deoxycholate-based protocol (P3) contained 160 ng donor DNA per mg tissue. The total number of infiltrating cells, and the population of CD45+leukocytes, CD4+T-cells, CD8a+cytotoxic T-cells, CD22+B-cells, NCR1+NK-cells, CD68+and CD163+macrophages were quantified on days 5, 15 and 30 after a subcutaneous allogenic (Lewis to Sprague Dawley) transplantation. Gene expression for the pro-inflammatory cytokines INF-γ, IL-1β, IL-2, IL-6 and TNF were also examined. P1 scaffolds triggered an early immune response that may had been negative for tissue regeneration but it was stabilized after 30 d. Conversely, P3 initiated a delayed immune response that appeared negative for scaffold survival. P2 scaffolds were the least immunogenic and remained similar to autologous tissue implants. Hence, an effective decellularization protocol based on a mild detergent was advantageous from an immunological perspective and appears the most promising for futurein vivouterus bioengineering applications.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Ahmed Baker Alsheikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Department of Obstetrics and Gynecology, Yeouido St Mary's Hospital, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Levent M Akyürek
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, 120 63, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|