1
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
2
|
Li S, Zhang Y, Yuan R, Zhu S, Bai J, Miao Y, Ou X, Wang Q, Xiong B. ARHGAP26 deficiency drives the oocyte aneuploidy and early embryonic development failure. Cell Death Differ 2024:10.1038/s41418-024-01384-5. [PMID: 39313581 DOI: 10.1038/s41418-024-01384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aneuploidy, the presence of a chromosomal anomaly, is a major cause of spontaneous abortions and recurrent pregnancy loss in humans. However, the underlying molecular mechanisms still remain poorly understood. Here, we report that ARHGAP26, a putative tumor suppressor gene, is a newly identified regulator of oocyte quality to maintain mitochondrial integrity and chromosome euploidy, thus ensuring normal embryonic development and fertility. Taking advantage of knockout mouse model, we revealed that genetic ablation of Arhgap26 caused the oocyte death at GV stage due to the mitochondrial dysfunction-induced ROS accumulation. Lack of Arhgap26 also impaired both in vitro and in vivo maturation of survived oocytes which results in maturation arrest and aneuploidy, and consequently leading to early embryonic development defects and subfertility. These observations were further verified by transcriptome analysis. Mechanistically, we discovered that Arhgap26 interacted with Cofilin1 to maintain the mitochondrial integrity by regulating Drp1 dynamics, and restoration of Arhgap26 protein level recovered the quality of Arhgap26-null oocytes. Importantly, we found an ARHGAP26 mutation in a patient with history of recurrent miscarriage by chromosomal microarray analysis. Altogether, our findings uncover a novel function of ARHGAP26 in the oocyte quality control and prevention of aneuploidy and provide a potential treatment strategy for infertile women caused by ARHGAP26 mutation.
Collapse
Affiliation(s)
- Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruiying Yuan
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xianghong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| | - Bo Xiong
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Jiang Y, Zhu H, Wang T, Tong H, Liu J, Yang Y, Zhou X, Liu X. Hypermethylation and low expression of FOXM1 predisposes women to unexplained recurrent miscarriage by impairing trophoblast stem cell proliferation. Cell Signal 2024; 121:111259. [PMID: 38871040 DOI: 10.1016/j.cellsig.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Recurrent miscarriage (RM) is a distressing pregnancy complication with an unknown etiology. Increasing evidence indicates the relevance of dysregulation of human trophoblast stem cells (hTSCs), which may play a role in the development of RM. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of hTSCs is yet to be fully elucidated. In this study, we performed data analysis and identified Forkhead box M1 (FOXM1) as a potential factor associated with RM. FOXM1 is a typical transcription factor known for its involvement in various pathophysiological processes, while the precise function of FOXM1 functions in hTSCs and RM remains incompletely understood. Utilizing RNA-seq, CUT&Tag, ChIP-qPCR, and sodium bisulfite conversion methods for methylation analysis, we elucidate the underlying regulatory mechanisms of FOXM1 in hTSCs and its implications in RM. Our findings demonstrate the relative high expression of FOXM1 in proliferating cytotrophoblasts (CTBs) compared to differentiated extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STBs). Besides, we provide evidence supporting a significant correlation between FOXM1 downregulation and the incidence of RM. Furthermore, we demonstrate the significant role of FOXM1 in regulating hTSCs proliferation and cell cycle through the transcriptional regulation of CDKN3, CCNB2, CCNA2, MAD2L1 and CDC25C. Notably, we observed a correlation between the downregulation of FOXM1 in RM and hypermethylation in its promoter region. Collectively, these results provide insights into the impact of FOXM1 on trophoblast regulation and offer a novel perspective on RM.
Collapse
Affiliation(s)
- Youqing Jiang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China.; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huimin Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Tingting Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hai Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinkai Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Yang
- Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing 401147, China
| | - Xiaobo Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China..
| | - Xiru Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China..
| |
Collapse
|
4
|
Zhang J, Xue M, Huang J, He S, Zhu L, Zhao X, Wang B, Jiang T, Zhang Y, Miao C, Zhou G. Deficiency of UCHL1 results in insufficient decidualization accompanied by impaired dNK modulation and eventually miscarriage. J Transl Med 2024; 22:478. [PMID: 38769534 PMCID: PMC11103838 DOI: 10.1186/s12967-024-05253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. METHODS With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. RESULTS The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. CONCLUSIONS UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mingxing Xue
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shan He
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiaonan Zhao
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bei Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci 2024; 338:122409. [PMID: 38184273 DOI: 10.1016/j.lfs.2023.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.
Collapse
Affiliation(s)
- Tianyang Feng
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Xiling Zhang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China.
| |
Collapse
|
6
|
Li Z, Zheng Y, Zhang M, Wu K, Zhang L, Yao Y, Zheng C. Gut microbiota-derived metabolites associate with circulating immune cell subsets in unexplained recurrent spontaneous abortion. Heliyon 2024; 10:e24571. [PMID: 38312612 PMCID: PMC10835175 DOI: 10.1016/j.heliyon.2024.e24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Currently, the precise causes of over 40 % of recurrent spontaneous abortion (RSA) cases cannot be identified, leading to the term "unexplained RSA" (URSA). Through an exploration of the gut microbiota, metabolites, and immune cell subsets in URSA, this study establishes a link between gut microbiota-derived metabolites and immune cells. The results indicate reduced diversity in the gut microbiota of URSA. Targeted metabolomic analyses reveal decreased levels of gut microbiota-derived deoxycholic acid (DCA), glycolithocholic acid (GLCA), acetate, propionate, and butyrate in URSA. Furthermore, elevated frequencies of Th1, Th17, and plasma B cells, along with decreased frequencies of Tregs and Bregs, are observed in the peripheral blood of URSA. The results demonstrate correlations between the levels of gut microbiota-derived bile acids and short-chain fatty acids and the frequencies of various immune cell subsets in circulation. Collectively, this study uncovers an association between gut microbiota-derived metabolites and circulating immune cell subsets in URSA.
Collapse
Affiliation(s)
- Zhi Li
- Department of Gynaecology and Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Kaiqi Wu
- Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Long Zhang
- Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, China
| |
Collapse
|
7
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
8
|
Chen J, Li Y, Xu L, Sang Y, Li D, Du M. Paradoxical expression of NRP1 in decidual stromal and immune cells reveals a novel inflammation balancing mechanism during early pregnancy. Inflamm Res 2023:10.1007/s00011-023-01734-y. [PMID: 37328599 DOI: 10.1007/s00011-023-01734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the balancing mechanisms between decidualization-associated inflammation and pregnancy-related immunotolerance. MATERIAL OR SUBJECTS Decidual samples from women with normal pregnancy (n = 58) or unexplained spontaneous miscarriage (n = 13), peripheral blood from normal pregnancy and endometria from non-pregnancy (n = 10) were collected. Primary endometrial stromal cells (ESCs), decidual stromal cells (DSCs), decidual immune cells (DICs) and peripheral blood mononuclear cells (PBMCs) were isolated. TREATMENT The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. To induce decidualization in vitro, ESCs were treated with a combination of 10 nM estradiol, 100 nM progesterone and 0.5 mM cAMP. Anti-Sema3a and anti-NRP1 neutralizing antibodies were applied to block the ligand-receptor interactions. METHODS RNA-seq analysis was performed to identify differentially expressed genes in DSCs and DICs, and NRP1 expression was verified by Western blotting and flow cytometry. The secretion of inflammatory mediators was measured using a multifactor cytometric bead array. The effects of Sema3a-NRP1 pathway on DICs were determined by flow cytometry. Statistical differences between groups were compared using the T test and one way or two-way ANOVA. RESULTS Combined with five RNA-seq datasets, NRP1 was the only immune checkpoint changing oppositely between DSCs and DICs. The decreased expression of NRP1 in DSCs allowed intrinsic inflammatory responses required for decidualization, while its increased expression in DICs enhanced tolerant phenotypes beneficial to pregnancy maintenance. DSC-secreted Sema3a promoted immunosuppression in DICs via NRP1 binding. In women with miscarriage, NRP1 was abnormally elevated in DSCs but diminished in decidual macrophages and NK cells. CONCLUSION NRP1 is a multifunctional controller that balances the inflammatory states of DSCs and DICs in gravid uterus. Abnormal expression of NRP1 is implicated in miscarriage.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
- Department of Obstetrics and Gynecology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, 519020, China.
| |
Collapse
|
9
|
Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, Zhenyu J. Small-molecule compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol 2023; 14:1122008. [PMID: 37089937 PMCID: PMC10113621 DOI: 10.3389/fphar.2023.1122008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
S-phase kinase-associated protein 2 (Skp2) is a substrate-specific adaptor in Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases and widely regarded as an oncogene. Therefore, Skp2 has remained as an active anticancer research topic since its discovery. Accordingly, the structure of Skp2 has been solved and numerous Skp2 inhibiting compounds have been identified. In this review, we would describe the structural features of Skp2, introduce the ubiquitination function of SCFSkp2, and summarize the diverse natural and synthetic Skp2 inhibiting compounds reported to date. The IC50 data of the Skp2 inhibitors or inhibiting compounds in various kinds of tumors at cellular levels implied that the cancer type, stage and pathological mechanisms should be taken into consideration when selecting Skp2-inhibiting compound for cancer treatment.
Collapse
Affiliation(s)
- Jia Jing
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Li Rui
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sun Junyuan
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yang Jinfeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hong Zhihao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lu Weiguo
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| | - Jia Zhenyu
- Institute of Occupation Diseases, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| |
Collapse
|
10
|
Shoutai Wan Improves Embryo Survival by Regulating Aerobic Glycolysis of Trophoblast Cells in a Mouse Model of Recurrent Spontaneous Abortion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8251503. [PMID: 36212974 PMCID: PMC9534620 DOI: 10.1155/2022/8251503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background During embryo implantation, the blastocyst exhibits a high capacity for aerobic glycolysis, which results in a unique microenvironment of high lactate/low pH at the maternal-fetal interface. Shoutai Wan (STW) is an effective Chinese herbal formula widely used in the clinical treatment of recurrent spontaneous abortion (RSA). However, the specific molecular mechanism by which STW prevents abortion is yet to be elucidated. Methods Female CBA/J mice were allocated into six groups randomly and then mated with BALB/c mice as the control group, DBA/2 mice as the RSA model, CBA/J×DBA/2 mice treated with dydrogesterone as the DQYT group, or CBA/J×DBA/2 mice treated with low, medium, and high-dose STW as the STW-L, STW-M, and STW-H groups, respectively. Drug administration started 14 days before mating and ended on the 14th day of pregnancy. The embryo loss rate of each group was calculated on day 14 of gestation, and the pregnancy outcomes of the mice in each group were observed. The mouse serum was collected to determine the levels of progesterone (P) and chorionic gonadotropin (CG). The activities of HK2, PKM2, and LDHA, the key glycolytic enzymes in each group, were detected. The expressions of lactate, ATP, HK2, PKM2, LDHA, MCT4, GLUT1, and GPR81 as well as the morphology of trophoblast cells were examined. Results The embryo loss rate and adverse pregnancy outcomes were significantly increased (P < 0.05) in the RSA model group. After dydrogesterone or different doses of STW treatment, the embryo loss rate and adverse pregnancy outcomes were rescued to varying degrees (P < 0.05). Interestingly, there was no significant difference among the groups in terms of serum P and CG (P < 0.05). Moreover, the activities of key glycolytic enzymes, lactate, ATP, HK2, PKM2, LDHA, MCT4, GLUT1, GPR81 protein or mRNA expression, and morphological abnormalities of trophoblast cells improved significantly in the RSA mice after dydrogesterone or different doses of STW treatment (P < 0.05). Conclusion STW can promote aerobic glycolysis in trophoblast cells of RSA mouse embryos, thereby improving the microenvironment of the maternal-fetal interface and enhancing embryo implantation.
Collapse
|