1
|
Castille J, Thépot D, Fouchécourt S, Dalbies-Tran R, Passet B, Daniel-Carlier N, Vilotte JL, Monget P. The paralogs' enigma of germ-cell specific genes dispensable for fertility: the case of 19 oogenesin genes†. Biol Reprod 2023; 109:408-414. [PMID: 37561421 DOI: 10.1093/biolre/ioad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Gene knockout experiments have shown that many genes are dispensable for a given biological function. In this review, we make an assessment of male and female germ cell-specific genes dispensable for the function of reproduction in mice, the inactivation of which does not affect fertility. In particular, we describe the deletion of a 1 Mb block containing nineteen paralogous genes of the oogenesin/Pramel family specifically expressed in female and/or male germ cells, which has no consequences in both sexes. We discuss this notion of dispensability and the experiments that need to be carried out to definitively conclude that a gene is dispensable for a function.
Collapse
Affiliation(s)
- Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Monget
- PRC INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
2
|
Xiong M, Yin L, Gui Y, Lv C, Ma X, Guo S, Wu Y, Feng S, Fan X, Zhou S, Wang L, Wen Y, Wang X, Xie Q, Namekawa SH, Yuan S. ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. J Cell Biol 2023; 222:e202206067. [PMID: 36930220 PMCID: PMC10040813 DOI: 10.1083/jcb.202206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xv Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingzhen Xie
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology, Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Wang F, Wang L, Gan S, Feng S, Ouyang S, Wang X, Yuan S. SERBP1 Promotes Stress Granule Clearance by Regulating 26S Proteasome Activity and G3BP1 Ubiquitination and Protects Male Germ Cells from Thermostimuli Damage. RESEARCH (WASHINGTON, D.C.) 2023; 6:0091. [PMID: 37223481 PMCID: PMC10202183 DOI: 10.34133/research.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 04/18/2024]
Abstract
Stress granules (SGs) are membraneless cytoplasmic condensates that dynamically assemble in response to various stressors and reversibly disassemble after stimulus removal; however, the mechanisms underlying SG dynamics and their physiological roles in germ cell development are elusive. Here, we show that SERBP1 (SERPINE1 mRNA binding protein 1) is a universal SG component and conserved regulator of SG clearance in somatic and male germ cells. SERBP1 interacts with the SG core component G3BP1 and 26S proteasome proteins PSMD10 and PSMA3 and recruits them to SGs. In the absence of SERBP1, reduced 20S proteasome activity, mislocalized valosin containing protein (VCP) and Fas associated factor family member 2 (FAF2), and diminished K63-linked polyubiquitination of G3BP1 during the SG recovery period were observed. Interestingly, the depletion of SERBP1 in testicular cells in vivo causes increased germ cell apoptosis upon scrotal heat stress. Accordingly, we propose that a SERBP1-mediated mechanism regulates 26S proteasome activity and G3BP1 ubiquitination to facilitate SG clearance in both somatic and germ cell lines.
Collapse
Affiliation(s)
- Fengli Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sijin Ouyang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center,
Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Li Z, Zhang Y, Zhang X, Cao C, Luo X, Gui Y, Tang Y, Yuan S. Correction to: OTOGL, a gelforming mucin protein, is nonessential for male germ cell development and spermatogenesis in mice. Reprod Biol Endocrinol 2021; 19:136. [PMID: 34496867 PMCID: PMC8425043 DOI: 10.1186/s12958-021-00803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|