1
|
Zhang XF, Wang ZX, Zhang BW, Huang KP, Ren TX, Wang T, Cheng X, Hu P, Xu WH, Li J, Zhang JX, Wang H. TGF-β1-triggered BMI1 and SMAD2 cooperatively regulate miR-191 to modulate bone formation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102164. [PMID: 38549914 PMCID: PMC10973191 DOI: 10.1016/j.omtn.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Transforming growth factor β 1 (TGF-β1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-β1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-β1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-β1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-β1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Zi-Xuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Bo-Wen Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Kun-Peng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Tian-Xing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ting Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin-Xiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
2
|
Shen L, Zeng H, Fu Y, Ma W, Guo X, Luo G, Hua R, Wang X, Shi X, Wu B, Luo C, Quan S. Specific plasma microRNA profiles could be potential non-invasive biomarkers for biochemical pregnancy loss following embryo transfer. BMC Pregnancy Childbirth 2024; 24:351. [PMID: 38720272 PMCID: PMC11080217 DOI: 10.1186/s12884-024-06488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.
Collapse
Affiliation(s)
- Lang Shen
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zeng
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, 528000, China
| | - Yu Fu
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenmin Ma
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, 528000, China
| | - Xiaoling Guo
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, 528000, China
| | - Guoqun Luo
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Foshan, 528000, China
| | - Rui Hua
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaocong Wang
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Shi
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Biao Wu
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chen Luo
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Quan
- Reproductive Center of Gynecology and Obstetrics Department, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Batra K, Sehrawat A, Kumar A, Singh M, Kaur R, Yadav DC, Singh N, Maan S. Identification of circulatory microRNA based biomarkers for early pregnancy diagnosis in buffalo. Front Cell Dev Biol 2024; 12:1386241. [PMID: 38770151 PMCID: PMC11102991 DOI: 10.3389/fcell.2024.1386241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction: The most crucial factor in improving animal reproduction efficiency is early pregnancy diagnosis. Early diagnosis not only reduces the time interval between two calvings but also aids farmers in identifying open animals, thereby preventing significant milk production losses. Therefore, the objective of this study was to discover circulatory miRNAs that would be useful for early pregnancy diagnosis in buffalo. Material and methods: Blood samples were taken on 0, 6th, 12th, and 18th day after artificial insemination from pregnant animals (n = 30) and non-pregnant animals (n = 20). During these stages of pregnancy, total RNA was extracted, and a small RNA library was subsequently generated and sequenced on the Illumina platform. Subsequently, Real-time PCR was used to validate the findings. Results and discussion: There were 4,022 miRNAs found during the pregnancy, with 15 of those lacking sequences and 4,007 having sequences already in the database. From the beginning of pregnancy until the 18th day, 25 of these miRNAs showed a substantial shift in expression levels in the maternal blood, with a change more than two logs. Furthermore, based on qPCR results, 19 miRNAs were found to be more abundant in pregnant animals than in non-pregnant animals. We used target prediction analysis to learn how maternally expressed miRNAs relate to fetal-maternal communication. In conclusion, miRNA based biomarkers that could be associated with the diagnosis of pregnancy were identified including miR-181a and miR-486 highly upregulated on the 18th day of pregnancy. This study also provides a comprehensive profile of the entire miRNA population in maternal buffalo blood during the early stages of pregnancy.
Collapse
Affiliation(s)
- Kanisht Batra
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Anju Sehrawat
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Aman Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Man Singh
- Department of Livestock Production and Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ramandeep Kaur
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Dipin Chander Yadav
- Department of Livestock Production and Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Neha Singh
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
4
|
Esmaeilivand M, Ghasemzadeh A, Niknafs B, Fattahi A. Association of Trophectoderm mRNAs and MicroRNAs with Chromosomal Aneuploidy of Embryo. Reprod Sci 2024; 31:1028-1033. [PMID: 37964074 DOI: 10.1007/s43032-023-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
MicroRNAs (miRNAs) and mRNAs can serve as indicators of the chromosomal state of an embryo, with different profiles observed in euploid and aneuploid blastocysts. Examining the levels of miRNAs associated with aneuploidy and euploidy, as well as mRNAs related to implantation, can aid in predicting blastocyst chromosomal normality and improving assisted reproductive technology (ART) outcomes. This study analyzed chromosomal abnormality of 25 blastocysts using fluorescence in situ hybridization (FISH) and also the expression of genes ERBB4, SELL, ITGB3, and ITGAV, as well as miRNAs, miR-339, miR-27b, miR-661, miR-30c, miR-191, miR-345, miR-142, miR-141, miR-20a, and miR-372. We found that 17 out of 25 embryos were aneuploid. Moreover, results revealed lower expression levels of miR-30c and miR-372 in aneuploid embryos compared to euploid ones, while ITGAV and ITGB3 showed significantly higher expression in aneuploid embryos. These findings suggest that miR-372, miR-30c, ITGAV, and ITGB3 expression in trophectoderm cells can serve as biomarkers for assessing embryo health.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Department of Obstetrics and Gynecology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065751. [PMID: 36982824 PMCID: PMC10052053 DOI: 10.3390/ijms24065751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Despite advances in in vitro fertilization (IVF), there is still a lack of non-invasive and reliable biomarkers for selecting embryos with the highest developmental and implantation potential. Recently, small non-coding RNAs (sncRNAs) have been identified in biological fluids, and extracellular sncRNAs are explored as diagnostic biomarkers in the prediction of IVF outcomes. To determine the predictive role of sncRNAs in embryo quality and IVF outcomes, a systematic review and meta-analysis was performed. Articles were retrieved from PubMed, EMBASE, and Web of Science from 1990 to 31 July 2022. Eighteen studies that met the selection criteria were analyzed. In total, 22 and 47 different sncRNAs were found to be dysregulated in follicular fluid (FF) and embryo spent culture medium (SCM), respectively. MiR-663b, miR-454 and miR-320a in FF and miR-20a in SCM showed consistent dysregulation in two different studies. The meta-analysis indicated the potential predictive performance of sncRNAs as non-invasive biomarkers, with a pooled area under curve (AUC) value of 0.81 (95% CI 0.78, 0.844), a sensitivity of 0.79 (95% CI 0.72, 0.85), a specificity of 0.67 (95% CI 0.52, 0.79) and a diagnostic odds ratio (DOR) of 8 (95% CI 5, 12). Significant heterogeneity was identified among studies in sensitivity (I2 = 46.11%) and specificity (I2 = 89.73%). This study demonstrates that sncRNAs may distinguish embryos with higher developmental and implantation potentials. They can be promising non-invasive biomarkers for embryo selection in ART. However, the significant heterogeneity among studies highlights the demand for prospective multicenter studies with optimized methods and adequate sample sizes in the future.
Collapse
|
6
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Maigoro AY, Kang H, Cha D, Yun SH, Kim SI, Lee S, Cho J. Isolation, characterization, proteome, miRNAome, and the embryotrophic effects of chicken egg yolk nanovesicles (vitellovesicles). Sci Rep 2023; 13:4204. [PMID: 36918605 PMCID: PMC10014936 DOI: 10.1038/s41598-023-31012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Egg yolk constitutes about a third of the structure of the chicken egg however, the molecular structure and physiological effects of egg yolk-derived lipid membranous vesicles are not clearly understood. In this study, for the first record, the egg yolk nanovesicles (vitellovesicles, VVs) were isolated, characterized, and used as a supplement for porcine embryo culture. Yolks of ten freshly oviposited eggs were filtered and ultracentrifuged at 100,000 × g for 3 h to obtain a pellet. Cryogenic transmission electron microscopy and nanoparticle tracking analysis of the pellet revealed bilipid membranous vesicles. Protein contents of the pellet were analyzed using tandem mass spectrometry and the miRNA content was also profiled through BGISEQ-500 sequencer. VVs were supplemented with the in vitro culture medium of day-7 hatched parthenogenetic blastocysts. After 2 days of blastocyst culture, the embryonic cell count was increased in VVs supplemented embryos in comparison to the non-supplemented embryos. TUNEL assay showed that apoptotic cells were increased in control groups when compared with the VVs supplemented group. Reduced glutathione was increased by 2.5 folds in the VVs supplemented group while reactive oxygen species were increased by 5.3 folds in control groups. Quantitative PCR analysis showed that VVs significantly increased the expression of lipid metabolism-associated genes (monoglyceride lipase and lipase E), anti-apoptotic gene (BCL2), and superoxide dismutase, while significantly reducing apoptotic gene (BAX). Culturing embryos on Matrigel basement membrane matrix indicated that VVs significantly enhanced embryo attachment and embryonic stem cell outgrowths compared to the non-supplemented group. This considers the first report to characterize the molecular bioactive cargo contents of egg yolk nanovesicles to show their embryotrophic effect on mammalian embryos. This effect might be attributed to the protein and miRNA cargo contents of VVs. VVs can be used for the formulation of in vitro culture medium for mammalian embryos including humans.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|