1
|
Hirashima T, W P S, Noda T. Collective sperm movement in mammalian reproductive tracts. Semin Cell Dev Biol 2024; 166:13-21. [PMID: 39675229 DOI: 10.1016/j.semcdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore.
| | - Sound W P
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Taichi Noda
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Qu J, Wu L, Mou L, Liu C. Polystyrene microplastics trigger testosterone decline via GPX1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174536. [PMID: 38977086 DOI: 10.1016/j.scitotenv.2024.174536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
As an emerging environmental endocrine disruptor, polystyrene microplastics (PS-MPs) are considered to have the anti-androgenic feature and impair male reproductive function. To explore the adverse effects of PS-MPs on testosterone synthesis and male reproduction and further elucidate underlying mechanisms, BALB/c mice and Leydig cells were employed in the present work. The results indicated that 50 μm PS-MPs accumulated in mouse testes and were internalized into the cytoplasm. This not only damaged the testicular histomorphology and ultrastructure, but also reduced the viability of Leydig cells and the serum level of GnRH, FSH, LH, and testosterone. After PS-MPs exposure, the ubiquitination degradation and miR-425-3p-targeted modulation synergistically contributed to the suppression of GPX1, which induced oxidative stress and subsequently activated the PERK-EIF2α-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress. The transcription factor CHOP positively regulated the expression of SRD5A2 by directly binding to its promoter region, thereby accelerating testosterone metabolism and ultimately lowing testosterone levels. Besides, PS-MPs compromised testosterone homeostasis via interfering with the hypothalamic-pituitary-testis (HPT) axis. Taken together, PS-MPs possess an anti-androgenic characteristic and exert male reproductive damage effects. The antioxidant enzyme GPX1 plays a crucial role in the PS-MPs-mediated testosterone decline.
Collapse
Affiliation(s)
- Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Liling Wu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
3
|
Han X, Li Y, Zong Y, Zhao Y, Jiang L, Ni A, Yang H, Yuan J, Ma H, Ma L, Chen J, Ma T, Sun Y. Key miRNAs of chicken seminal plasma extracellular vesicles related with sperm motility regulation. Int J Biol Macromol 2024; 277:134022. [PMID: 39038569 DOI: 10.1016/j.ijbiomac.2024.134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
MicroRNAs (miRNAs) are bio-active elements cargoed by seminal plasma extracellular vesicles extracellular vesicles (SPEVs) which are crucial for sperm function and fertility modulation. This study aimed to isolate, characterize, and identify the miRNA expression profiles in the SPEVs from high (HSM) and low sperm motility (LSM) groups that could serve as fertility biomarkers and explain the underlying mechanisms. The isolated SPEVs were round spherical structures of approximately 50-200 nm in diameter expressing molecular markers. A total of 1006 and 1084 miRNAs were detected in HSM and LSM, respectively, with 34 being differentially expressed. Their targeted genes involved in SNARE interactions in vesicular transport, Metabolic pathways, and Apelin signaling pathway, etc. The joint analysis with mRNAs of sperm and sperm storage tubules cells highlighted the cellular communication mediated by SPEVs miRNAs, where they may rule fertility by affecting sperm maturation and amino acid metabolism. SPEVs as additives could improve fertility of fresh and frozen sperm, while the knockdown of one of the differentially expressed miRNAs, miR-24-3p, diminished this effect, indicating its crucial roles. This study expands our understanding of SPEVs miRNAs mediated sperm maturation and fertility modulation, and may help to develop new therapeutic strategies for infertility and sperm storage.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yi Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Lijun Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tenghe Ma
- College of medicine, Hebei University of Engineering, Handan 056000, Hebei, China.
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Ma Z, Tang N, Zhang R, Deng H, Chen K, Liu Y, Ding Z. Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis. Antioxidants (Basel) 2024; 13:1020. [PMID: 39199264 PMCID: PMC11351606 DOI: 10.3390/antiox13081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
- Department of Teaching Laboratory Center for Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| | - Ruiyan Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Hanyu Deng
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Kexin Chen
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Z.); (H.D.); (K.C.)
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Z.M.); (N.T.)
| |
Collapse
|
6
|
Fang S, Li Z, Pang S, Gan Y, Ding X, Peng H. Identification of postnatal development dependent genes and proteins in porcine epididymis. BMC Genomics 2023; 24:729. [PMID: 38049726 PMCID: PMC10694963 DOI: 10.1186/s12864-023-09827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The epididymis is a highly regionalized tubular organ possesses vectorial functions of sperm concentration, maturation, transport, and storage. The epididymis-expressed genes and proteins are characterized by regional and developmental dependent pattern. However, a systematic and comprehensive insight into the postnatal development dependent changes in gene and protein expressions of porcine epididymis is still lacking. Here, the RNA and protein of epididymis of Duroc pigs at different postnatal development stages were extracted by using commercial RNeasy Midi kit and extraction buffer (7 M Urea, 2 M thiourea, 3% CHAPS, and 1 mM PMSF) combined with sonication, respectively, which were further subjected to transcriptomic and proteomic profiling. RESULTS Transcriptome analysis indicated that 198 and 163 differentially expressed genes (DEGs) were continuously up-regulated and down-regulated along with postnatal development stage changes, respectively. Most of the up-regulated DEGs linked to functions of endoplasmic reticulum and lysosome, while the down-regulated DEGs mainly related to molecular process of extracellular matrix. Moreover, the following key genes INSIG1, PGRMC1, NPC2, GBA, MMP2, MMP14, SFRP1, ELN, WNT-2, COL3A1, and SPARC were highlighted. A total of 49 differentially expressed proteins (DEPs) corresponding to postnatal development stages changes were uncovered by the proteome analysis. Several key proteins ACSL3 and ACADM, VDAC1 and VDAC2, and KNG1, SERPINB1, C3, and TF implicated in fatty acid metabolism, voltage-gated ion channel assembly, and apoptotic and immune processes were emphasized. In the integrative network, the key genes and proteins formed different clusters and showed strong interactions. Additionally, NPC2, COL3A1, C3, and VDAC1 are located at the hub position in each cluster. CONCLUSIONS The identified postnatal development dependent genes and proteins in the present study will pave the way for shedding light on the molecular basis of porcine epididymis functions and are useful for further studies on the specific regulation mechanisms responsible for epididymal sperm maturation.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zhechen Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Shuo Pang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yating Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaoning Ding
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Han X, Li Y, Zong Y, Li D, Yuan J, Yang H, Ma H, Ni A, Wang Y, Zhao J, Chen J, Ma T, Sun Y. Extracellular vesicle-coupled miRNA profiles of chicken seminal plasma and their potential interaction with recipient cells. Poult Sci 2023; 102:103099. [PMID: 37812871 PMCID: PMC10563059 DOI: 10.1016/j.psj.2023.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The presence of EVs in seminal plasma (SPEVs) suggests their involvement on fertility via transmitting information between the original cells and recipient cells. SPEVs-coupled miRNAs have been shown to affect sperm motility, maturation, and capacitation in mammals, but rarely in poultry species. The present study aims to reveal the profile of SPEVs miRNAs and their potential effect on sperm storage and function in poultry. The SPEVs was successfully isolated from 4 different chicken breeds by ultracentrifugation and verified. Deep sequencing of SPEVs small RNA library of each breed identified 1077 miRNAs in total and 563 shared ones. The top 10 abundant miRNAs (such as miR-10-5p, miR-100-5p, and miR-10a-5p etc.) accounted for around 60% of total SPEVs miRNA reads and are highly conserved across species, predisposing their functional significance. Target genes prediction and functional enrichment analysis indicated that the most abundantly expressed miRNAs may regulate pathways like ubiquitin-mediated proteolysis, endocytosis, mitophagy, glycosphingolipid biosynthesis, fatty acid metabolism, and fatty acid elongation. The high abundant SPEVs-coupled miRNAs were found to target 107 and 64 functionally important mRNAs in the potential recipient cells, sperm and sperm storage tubules (SST) cells, respectively. The pathways that enriched by target mRNAs revealed that the SPEVs-coupled miRNA may rule the fertility by affecting the sperm maturation and regulating the female's immune response and lipid metabolism. In summary, this study presents the distinctive repertoire of SPEVs-coupled miRNAs, and extends our understanding about their potential roles in sperm maturation, capacitation, storage, and fertility, and may help to develop new therapeutic strategies for male infertility and sperm storage.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dongli Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanmei Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinmeng Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tenghe Ma
- College of medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Ma Z, Li J, Fu L, Fu R, Tang N, Quan Y, Xin Z, Ding Z, Liu Y. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction. BMC Med 2023; 21:453. [PMID: 37993934 PMCID: PMC10664275 DOI: 10.1186/s12916-023-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The epididymis is crucial for post-testicular sperm development which is termed sperm maturation. During this process, fertilizing ability is acquired through the epididymis-sperm communication via exchange of protein and small non-coding RNAs (sncRNAs). More importantly, epididymal-derived exosomes secreted by the epididymal epithelial cells transfer sncRNAs into maturing sperm. These sncRNAs could mediate intergenerational inheritance which further influences the health of their offspring. Recently, the linkage and mechanism involved in regulating sperm function and sncRNAs during epididymal sperm maturation are increasingly gaining more and more attention. METHODS An epididymal-specific ribonuclease T2 (RNase T2) knock-in (KI) mouse model was constructed to investigate its role in developing sperm fertilizing capability. The sperm parameters of RNase T2 KI males were evaluated and the metabolic phenotypes of their offspring were characterized. Pandora sequencing technology profiled and sequenced the sperm sncRNA expression pattern to determine the effect of epididymal RNase T2 on the expression levels of sperm sncRNAs. Furthermore, the expression levels of RNase T2 in the epididymal epithelial cells in response to environmental stress were confirmed both in vitro and in vivo. RESULTS Overexpression of RNase T2 caused severe subfertility associated with astheno-teratozoospermia in mice caput epididymis, and furthermore contributed to the acquired metabolic disorders in the offspring, including hyperglycemia, hyperlipidemia, and hyperinsulinemia. Pandora sequencing showed altered profiles of sncRNAs especially rRNA-derived small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs) in RNase T2 KI sperm compared to control sperm. Moreover, environmental stress upregulated RNase T2 in the caput epididymis. CONCLUSIONS The importance was demonstrated of epididymal RNase T2 in inducing sperm maturation and intergenerational inheritance. Overexpressed RNase T2 in the caput epididymis leads to astheno-teratozoospermia and metabolic disorder in the offspring.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Jinyu Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Li Fu
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Zhixiang Xin
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| |
Collapse
|