1
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
2
|
Ehm P, Bettin B, Jücker M. Activated Src kinases downstream of BCR-ABL and Flt3 induces proteasomal degradation of SHIP1 by phosphorylation of tyrosine 1021. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119467. [PMID: 36958526 DOI: 10.1016/j.bbamcr.2023.119467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
Within the various subtypes of ALL, patients with a BCR-ABL-positive background as well as with a genetic change in the KMT2A gene have by far the worst survival probabilities. Interestingly, both subtypes are characterized by highly activated tyrosine kinases. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is often constitutively activated in ALL. The protein expression of SHIP1 is decreased in most T-ALL and in some subgroups of B-ALL. In this study, we analyzed the expression of SHIP1 protein in detail in the context of groups with aberrant activated tyrosine kinases, namely BCR-ABL (Ph+) and Flt3 (KMT2A translocations). We demonstrate that constitutively activated Src kinases downstream of BCR-ABL and receptor tyrosine kinases reduce the SHIP1 expression in a SHIP1-Y1021 phosphorylated-dependent manner with subsequent ubiquitin marked proteasomal degradation. Inhibition of BCR-ABL (Imatinib), Flt3 (Quizartinib) or Src-Kinase-Family (Saracatinib) leads to significant reconstitution of SHIP1 protein expression. These results further support a functional role of SHIP1 as tumor suppressor protein and could be the basis for the establishment of a targeted therapy form.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Research Institute Children's Cancer Center Hamburg, Hamburg and Dept. of Pediatric Oncology and Hematology, University Medical Center, Hamburg, Germany.
| | - Bettina Bettin
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Asai H, Kato K, Suzuki M, Takahashi M, Miyata E, Aoi M, Kumazawa R, Nagashima F, Kurosaki H, Aoyagi Y, Fukuishi N. Potential Anti-allergic Effects of Bibenzyl Derivatives from Liverworts, Radula perrottetii. PLANTA MEDICA 2022; 88:1069-1077. [PMID: 35081628 DOI: 10.1055/a-1750-3765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liverwort Radula perrottetii contains various bibenzyl derivatives which are known to possess various biological activities, such as anti-inflammatory effects. Mast cells (MC) play crucial roles in allergic and inflammatory diseases; thus, inhibition of MC activation is pivotal for the treatment of allergic and inflammatory disorders. We investigated the effects of perrottetin D (perD), isolated from Radula perrottetii, and perD diacetate (Ac-perD) on antigen-induced activation of MCs. Bone marrow-derived MCs (BMMCs) were generated from C57BL/6 mice. The degranulation ratio, histamine release, and the interleukin (IL)-4 and leukotriene B4 productions on antigen-triggered BMMC were investigated. Additionally, the effects of the bibenzyls on binding of IgE to FcεRI were observed by flow cytometry, and signal transduction proteins was examined by Western blot. Furthermore, binding of the bibenzyls to the Fyn kinase domain was calculated. At 10 µM, perD decreased the degranulation ratio (p < 0.01), whereas 10 µM Ac-perD down-regulated IL-4 production (p < 0.05) in addition to decreasing the degranulation ratio (p < 0.01). Both compounds tended to decrease histamine release at a concentration of 10 µM. Although 10 µM perD reduced only Syk phosphorylation, 10 µM Ac-perD diminished phosphorylation of Syk, Gab2, PLC-γ, and p38. PerD appeared to selectively bind Fyn, whereas Ac-perD appeared to act as a weak but broad-spectrum inhibitor of kinases, including Fyn. In conclusion, perD and Ac-perD suppressed the phosphorylation of signal transduction molecules downstream of the FcεRI and consequently inhibited degranulation, and/or IL-4 production. These may be beneficial potential lead compounds for the development of novel anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Koichi Kato
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moe Suzuki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Misato Takahashi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Erika Miyata
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moeka Aoi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Reika Kumazawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | | | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| |
Collapse
|
4
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
5
|
Xu C, Li L, Wang C, Jiang J, Li L, Zhu L, Jin S, Jin Z, Lee JJ, Li G, Yan G. Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways. J Ginseng Res 2021; 46:550-560. [PMID: 35818417 PMCID: PMC9270651 DOI: 10.1016/j.jgr.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-κB and p38MAPK-Nrf2/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
| | - Lianhua Zhu
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Shan Jin
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Zhehu Jin
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Jung Joon Lee
- College of Pharmacy, Yanbian University, Yanji, China
| | - Guanhao Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Food Research Center of Yanbian University, Yanji, China
- Corresponding author. Food Research Center of Yanbian University, No. 977 Gongyuan Road, Yanji, 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Corresponding author. Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002, PR China.
| |
Collapse
|
6
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
7
|
Simonowski A, Wilhelm T, Habib P, Zorn CN, Huber M. Differential use of BTK and PLC in FcεRI- and KIT-mediated mast cell activation: A marginal role of BTK upon KIT activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118622. [PMID: 31837347 DOI: 10.1016/j.bbamcr.2019.118622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/16/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
In mast cells (MCs), the TEC family kinase (TFK) BTK constitutes a central regulator of antigen (Ag)-triggered, FcεRI-mediated PLCγ phosphorylation, Ca2+ mobilization, degranulation, and pro-inflammatory cytokine production. Less is known about the function of BTK in the context of stem cell factor (SCF)-induced KIT signaling. In bone marrow-derived MCs (BMMCs), Ag stimulation caused intense phosphorylation of BTK at Y551 in its active center and at Y223 in its SH3-domain, whereas in response to SCF only Y223 was significantly phosphorylated. Further data using the TFK inhibitor Ibrutinib indicated that BTK Y223 is phosphorylated by a non-BTK TFK upon SCF stimulation. In line, SCF-induced PLCγ1 phosphorylation was stronger attenuated by Ibrutinib than by BTK deficiency. Subsequent pharmacological analysis of PLCγ function revealed a total block of SCF-induced Ca2+ mobilization by PLC inhibition, whereas only the sustained phase of Ca2+ flux was curtailed in Ag-stimulated BMMCs. Despite this severe stimulus-dependent difference in inducing Ca2+ mobilization, PLCγ inhibition suppressed Ag- and SCF-induced degranulation and pro-inflammatory cytokine production to comparable extents, suggesting involvement of additional TFK(s) or PLCγ-dependent signaling components. In addition to PLCγ, the MAPKs p38 and JNK were activated by Ag in a BTK-dependent manner; this was not observed upon SCF stimulation. Hence, FcεRI and KIT employ different mechanisms for activating PLCγ, p38, and JNK, which might strengthen their cooperation regarding pro-inflammatory MC effector functions. Importantly, our data clearly demonstrate that analyzing BTK Y223 phosphorylation is not sufficient to prove BTK activation.
Collapse
Affiliation(s)
- Anne Simonowski
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Carolin N Zorn
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Dhakal H, Lee S, Kim EN, Choi JK, Kim MJ, Kang J, Choi YA, Baek MC, Lee B, Lee HS, Shin TY, Jeong GS, Kim SH. Gomisin M2 Inhibits Mast Cell-Mediated Allergic Inflammation via Attenuation of FcεRI-Mediated Lyn and Fyn Activation and Intracellular Calcium Levels. Front Pharmacol 2019; 10:869. [PMID: 31427975 PMCID: PMC6688163 DOI: 10.3389/fphar.2019.00869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mast cells are effector cells that induce allergic inflammation by secreting inflammatory mediators. Gomisin M2 (G.M2) is a lignan isolated from Schisandra chinensis (Turcz). Baill. exhibiting anti-cancer activities. We aimed to investigate the anti-allergic effects and the underlying mechanism of G.M2 in mast cell–mediated allergic inflammation. For the in vitro study, we used mouse bone marrow–derived mast cells, RBL-2H3, and rat peritoneal mast cells. G.M2 inhibited mast cell degranulation upon immunoglobulin E (IgE) stimulation by suppressing the intracellular calcium. In addition, G.M2 inhibited the secretion of pro-inflammatory cytokines. These inhibitory effects were dependent on the suppression of FcεRI-mediated activation of signaling molecules. To confirm the anti-allergic effects of G.M2 in vivo, IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models were utilized. Oral administration of G.M2 suppressed the PCA reactions in a dose-dependent manner. In addition, G.M2 reduced the ASA reactions, including hypothermia, histamine, interleukin-4, and IgE production. In conclusion, G.M2 exhibits anti-allergic effects through suppression of the Lyn and Fyn pathways in mast cells. According to these findings, we suggest that G.M2 has potential as a therapeutic agent for the treatment of allergic inflammatory diseases via suppression of mast cell activation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jinjoo Kang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Shik Lee
- School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, South Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Stimulus strength determines the BTK-dependence of the SHIP1-deficient phenotype in IgE/antigen-triggered mast cells. Sci Rep 2018; 8:15467. [PMID: 30341350 PMCID: PMC6195619 DOI: 10.1038/s41598-018-33769-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/05/2018] [Indexed: 01/27/2023] Open
Abstract
Antigen (Ag)-mediated crosslinking of IgE-loaded high-affinity receptors for IgE (FcεRI) on mast cells (MCs) triggers activation of proinflammatory effector functions relevant for IgE-associated allergic disorders. The cytosolic tyrosine kinase BTK and the SH2-containing inositol-5'-phosphatase SHIP1 are central positive and negative regulators of Ag-triggered MC activation, respectively, contrarily controlling Ca2+ mobilisation, degranulation, and cytokine production. Using genetic and pharmacological techniques, we examined whether BTK activation in Ship1-/- MCs is mandatory for the manifestation of the well-known hyperactive phenotype of Ship1-/- MCs. We demonstrate the prominence of BTK for the Ship1-/- phenotype in a manner strictly dependent on the strength of the initial Ag stimulus; particular importance for BTK was identified in Ship1-/- bone marrow-derived MCs in response to stimulation with suboptimal Ag concentrations. With respect to MAPK activation, BTK showed particular importance at suboptimal Ag concentrations, allowing for an analogous-to-digital switch resulting in full activation of ERK1/2 already at low Ag concentrations. Our data allow for a more precise definition of the role of BTK in FcεRI-mediated signal transduction and effector function in MCs. Moreover, they suggest that reduced activation or curtate expression of SHIP1 can be compensated by pharmacological inhibition of BTK and vice versa.
Collapse
|
10
|
Poplutz M, Levikova M, Lüscher-Firzlaff J, Lesina M, Algül H, Lüscher B, Huber M. Endotoxin tolerance in mast cells, its consequences for IgE-mediated signalling, and the effects of BCL3 deficiency. Sci Rep 2017; 7:4534. [PMID: 28674400 PMCID: PMC5495797 DOI: 10.1038/s41598-017-04890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
Stimulation with lipopolysaccharide (LPS; endotoxin) not only causes rapid production of proinflammatory cytokines, but also induces a state of LPS hypo-responsiveness to a second LPS stimulation (endotoxin tolerance (ET)). Murine bone marrow-derived MCs (BMMCs) and peritoneal MCs (PMCs) developed ET as shown by an abrogated production of Il6/Tnf RNAs and IL-6/TNF-α proteins. In naive BMMCs, LPS stimulation induced a transient decline in the trimethylation of lysine 9 of the core histone H3 (H3K9me3), a suppressive chromatin mark, at the Il6/Tnf promoters, which correlated with p50(NFκB) and p65(NFκB) binding. Both demethylation and NFκB binding were abrogated in tolerant cells. In addition, cytosolic NFκB activation was suppressed in tolerant BMMCs. Intriguingly, antigen stimulation of naive and tolerant MCs induced comparable production of Il6/Tnf and IL-6/TNF-α, although ET also affected antigen-triggered activation of NFκB; pharmacological analysis indicated the importance of Ca2+-dependent transcription in this respect. In macrophages, the IκB member BCL3 is induced by LPS and known to be involved in ET, which was not corroborated comparing wild-type and Bcl3-deficient BMMCs. Interestingly, Bcl3-deficient PMCs produce markedly increased amounts of IL-6/TNF-α after LPS stimulation. Collectively, ET in MCs is BCL3-independent, however, in PMCs, BCL3 negatively regulates immediate LPS-induced cytokine production and quantitatively affects ET.
Collapse
Affiliation(s)
- Magdalena Poplutz
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Maryna Levikova
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Marina Lesina
- Molecular Gastroenterology, Medical Clinic II, University Hospital Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Hana Algül
- Molecular Gastroenterology, Medical Clinic II, University Hospital Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|