1
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
2
|
Lin SJ, Lin MC, Liu TJ, Tsai YT, Tsai MT, Lee FJS. Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36. Nat Commun 2023; 14:7859. [PMID: 38030597 PMCID: PMC10687025 DOI: 10.1038/s41467-023-42979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Ming-Chieh Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Tsai-Jung Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Yueh-Tso Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Ming-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| |
Collapse
|
3
|
Sun X, Dai Y, He J, Li H, Yang X, Dong W, Xie X, Wang M, Xu Y, Lv L. D-mannose induces TFE3-dependent lysosomal degradation of EGFR and inhibits the progression of NSCLC. Oncogene 2023; 42:3503-3513. [PMID: 37845392 DOI: 10.1038/s41388-023-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
In non-small cell lung cancer (NSCLC), the overexpression or abnormal activation of epidermal growth factor receptor (EGFR) is associated with tumor progression and drug resistance. EGFR tyrosine kinase inhibitors (TKIs) are currently the first-line treatment of NSCLC. However, patients inevitably acquired EGFR TKIs resistance mutations, which led to disease progression, so it is urgent to find new treatment. Here, we report that D-mannose up-regulates lysosomal activity by enhancing TFE3-mediated lysosomal biogenesis, thereby increasing the degradation of EGFR and significantly down-regulating its protein level. Therefore, D-mannose significantly inhibited the proliferation, migration and invasion of wild-type EGFR (WT-EGFR) and EGFR mutant cells (E746-A750 deletion, L858R and T790M mutations) in vitro. Oral administration of D-mannose strongly inhibited tumor growth in mice, showing similar effects with osimertinib. Taken together, these data suggest that D-mannose may represent a new strategy for clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Xue Sun
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yue Dai
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing He
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongchen Li
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjing Dong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao Xie
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yanping Xu
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| | - Lei Lv
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang S, Wang T, Yang Q, Cheng S, Liu F, Yang G, Wang F, Wang R, Yang D, Zhou M, Duan C, Zhang Y, Liu H, Dai Z, Tian K, Liu S. Proteasomal deubiquitylase activity enhances cell surface recycling of the epidermal growth factor receptor in non-small cell lung cancer. Cell Oncol 2022; 45:951-965. [PMID: 36129611 DOI: 10.1007/s13402-022-00699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) represents a top therapeutic target in the treatment of non-small cell lung cancer. EGFR expression is intricately modulated by receptor endocytosis, during which EGFR ubiquitylation and deubiquitylation play fundamental roles to govern receptor fate. This study aims to uncover novel aspects of the endocytic regulation of EGFR trafficking by deubiquitylases. METHODS The expression and ubiquitylation of EGFR in non-small cell lung cancer cells treated with deubiquitylase inhibitors were assessed by immunoblotting, immunoprecipitation and mass spectrometry analyses. The intracellular EGFR distribution was investigated using immunofluorescence and confocal microscopy assays, and colocalizations with endocytic compartments were examined using GFP-tagged Rab proteins as markers. The influence of the proteasomal deubiquitylase inhibitor b-AP15 on EGF- and HSP90 inhibitor-induced EGFR downregulation was evaluated by immunoblotting. The anticancer effects of b-AP15 were assessed by cell proliferation, colony formation and flow cytometry assays, as well as xenograft animal models. RESULTS We found that b-AP15 caused a dramatically enhanced ubiquitylation of EGFR in lung cancer cells. Treatment with b-AP15 decreased cell surface EGFR levels and accumulated EGFR on recycling endosomes marked with Rab4A and Rab11A. b-AP15 effectively repressed EGF- and HSP90 inhibitor-induced EGFR degradation. Lung cancer cells exposed to b-AP15 showed markedly reduced cell propagation and significantly increased cell apoptosis. Furthermore, b-AP15 effectively inhibited tumor xenograft growth in nude mice. CONCLUSION Proteasomal USP14 and UCHL5 act collectively to promote cell surface recovery of EGFR. Inhibition of proteasomal deubiquitylase activity induces increased EGFR ubiquitylation and retention on recycling endosomes. The USP14 and UCHL5 dual inhibitor b-AP15 elicits potent tumor-suppressive effects to deter cell proliferation and induce apoptotic cell death in lung cancer.
Collapse
Affiliation(s)
- Shanshan Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianyi Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shaoxuan Cheng
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fang Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Guoheng Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fuqiang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilin Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dian Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mingyu Zhou
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chengen Duan
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhaoxia Dai
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,The Second Department of Thoracic Medical Oncology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, 116027, Dalian, Liaoning Province, P. R. China.
| | - Kang Tian
- Department of Bone and Joint, First Affiliated Hospital, Dalian Medical University, Dalian, China. .,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Orthopedic Sports Medicine, First Affiliated Hospital, Dalian Medical University, 222 Zhongshan Road, 116044, Dalian, Liaoning Province, P. R. China.
| | - Shuyan Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Institute of Cancer Stem Cell, Dalian Medical University, 9 West Sec. Lvshun South Road, 116044, Dalian, Liaoning Province, P. R. China.
| |
Collapse
|
5
|
EGFR-AS1 Promotes Nonsmall Cell Lung Cancer (NSCLC) Progression via Downregulating the miR-524-5p/DRAM1 Axis and Inhibiting Autophagic Lysosomal Degradation. JOURNAL OF ONCOLOGY 2022; 2022:4402536. [PMID: 35222643 PMCID: PMC8866007 DOI: 10.1155/2022/4402536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) accounts for the majority of lung cancers. Studies have revealed the regulatory role of lncRNAs in cancer pathogenesis and their potential use as diagnostic and prognostic biomarkers. The epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) has been reported to be upregulated in NSCLC tissues, while its detailed mechanism in lung cancer needs to be explored. DNA damage-regulated autophagy modulator 1 (DRAM1) has been known to act as a tumor suppressor in NSCLC, and miR-524-5p has been reported to be a biomarker in idiopathic pulmonary fibrosis and different lung disorders. Our investigation revealed that EGFR-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibited lung cancer cell invasion and viability and reduced tumor growth in vivo. We also found that EGFR-AS1 targets miR-524-5p, and there was a negative correlation between their expressions in lung cancer tissues. Simultaneously, miR-524-5p has been found to promote DRAM1 expression. In addition, the inhibition of miR-524-5p diminished DRAM1 protein expression and promoted lung cancer cell invasion. Our study has revealed that EGFR-AS1 contributes to the pathogenesis of NSCLC by inhibiting autophagic-lysosomal degradation via targeting the miR-524-5p/DRAM1 axis. This finding elucidated for the first time the role of EGFR-AS1 in lung cancer progression and the positive regulatory function of miR-524-5p in regulating DRAM1 protein and suppressing lung cancer progression. This novel mechanism provided a better insight into the pathogenesis of lung cancer and presented a better strategy for the treatment of lung cancer.
Collapse
|
6
|
Wang J, Yu P, Xie X, Wu L, Zhou M, Huan F, Jiang L, Gao R. Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116304. [PMID: 33401208 DOI: 10.1016/j.envpol.2020.116304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological studies have demonstrated that the general population's exposure to bisphenol A (BPA) substitutes is ubiquitous. Bisphenol F (BPF), one of the main BPA substitutes, is increasingly replacing BPA in plastics for food and beverage applications. Accumulating evidence suggests that BPA exposure is associated with nonalcoholic fatty liver disease (NAFLD)-like changes. However, the potential effects of BPF on lipid homeostasis remain poorly understood. In the present study, an epidemiological analysis with LC-MS-MS revealed that the BPF concentrations in the serum of NAFLD patients were significantly higher than those in a control group. Supporting this result, using Oil Red O, BODIPY 493/503, LipidTox Deep Red staining and gas chromatography-time-of-flight mass spectrometry (TOF-MS) assays, we found that BPF exposure induced NAFLD-like changes, with obvious lipid droplet deposition, triglyceride (TG) and fatty acids increase in mouse livers. Meanwhile, lipid droplet deposition and TG increase induced by BPF were also observed in HepG2 cells, accompanied by autophagic flux blockade, including autophagosome accumulation and the decreased degradation of SQSTM1/p62. Using adenoviruses dual-reporter plasmid RFP-GFP-LC3, RFP-GFP-PLIN2 transfection, AO staining, and EGFR degradation assays, we demonstrated that BPF treatment impaired lysosomal degradative capacity, since BPF treatment obviously impaired lysosomal acidification, manifested as decreased lysosomal hydrolase cathepsin L (CTSL) and mature cathepsin D (CTSD) in HepG2 and mouse liver issues. Additionally, v-ATPase D, a multi-subunit enzyme that mediates acidification of eukaryotic intracellular organelles, significantly decreased after BPF exposure in both the vitro and in vivo studies. This study ascertained a novel mechanism involving dysfunctional of lysosomal degradative capacity induced by BPF, which contributes to lipophagic disorders and causes lipid droplet deposition. This work provides evidence that lysosomes may be a target organelle where BPF exerts its potential toxicity; therefore, novel intervention strategies targeting lysosome are promising for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Pengfei Yu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, 214000, China
| | - Manfei Zhou
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, NanjingMedical University, Nanjing, China
| | - Fei Huan
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, NanjingMedical University, Nanjing, China.
| |
Collapse
|
7
|
USP29 enhances chemotherapy-induced stemness in non-small cell lung cancer via stabilizing Snail1 in response to oxidative stress. Cell Death Dis 2020; 11:796. [PMID: 32968046 PMCID: PMC7511960 DOI: 10.1038/s41419-020-03008-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
Abstract
Chemotherapy remains an essential part of diverse treatment regimens against human malignancies. However, recent progressions have revealed a paradoxical role of chemotherapies to induce the cancer stem cell-like features that facilitate chemoresistance and tumor dissemination, with the underlying mechanisms underinvestigated. The zinc-finger transcription factor Snail1 is a central regulator during the epithelial-mesenchymal transition process and is closely implicated in cancer progression. Snail1 expression is strictly regulated at multiple layers, with its stability governed by post-translational ubiquitylation that is counterbalanced by the activities of diverse E3 ligases and deubiquitylases. Here we identify the deubiquitylase USP29 as a novel stabilizer of Snail1, which potently restricts its ubiquitylation in a catalytic activity-dependent manner. Bioinformatic analysis reveals a reverse correlation between USP29 expression and prognosis in lung adenocarcinoma patients. USP29 is unique among Snail1 deubiquitylases through exhibiting chemotherapy-induced upregulation. Mechanistically, oxidative stresses incurred by chemotherapy stimulate transcriptional activation of USP29. USP29 upregulation enhances the cancer stem cell-like characteristics in lung adenocarcinoma cells to promote tumorigenesis in athymic nude mice. Our findings uncover a novel mechanism by which chemotherapy induces cancer stemness and suggest USP29 as a potential therapeutic target to impede the development of chemoresistance and metastasis in lung adenocarcinoma.
Collapse
|
8
|
Geng J, Zhang R, Yuan X, Xu H, Zhu Z, Wang X, Wang Y, Xu G, Guo W, Wu J, Qin ZH. DRAM1 plays a tumor suppressor role in NSCLC cells by promoting lysosomal degradation of EGFR. Cell Death Dis 2020; 11:768. [PMID: 32943616 PMCID: PMC7498585 DOI: 10.1038/s41419-020-02979-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. DNA damage-regulated autophagy modulator 1 (DRAM1) plays an important roles in autophagy and tumor progression. However, the mechanisms by which DRAM1 inhibits tumor growth are not fully understood. Here, we report that DRAM1 was decreased in nonsmall-cell lung carcinoma (NSCLC) and was associated with poor prognosis. We confirmed that DRAM1 inhibited the growth, migration, and invasion of NSCLC cells in vitro. Furthermore, overexpression of DRAM1 suppressed xenografted NSCLC tumors in vivo. DRAM1 increased EGFR endocytosis and lysosomal degradation, downregulating EGFR signaling pathway. On one side, DRAM1 interacted with EPS15 to promote EGFR endocytosis, as evidence by the results of proximity labeling followed by proteomics; on the other, DRAM1 recruited V-ATP6V1 subunit to lysosomes, thereby increasing the assemble of the V-ATPase complex, resulting in decreased lysosomal pH and increased activation of lysosomal proteases. These two actions of DRAM1 results in acceleration of EGFR degradation. In summary, these in vitro and in vivo studies uncover a novel mechanism through which DRAM1 suppresses oncogenic properties of NSCLC by regulating EGFR trafficking and degradation and highlights the potential value of DRAM1 as a prognostic biomarker in lung cancers.
Collapse
Affiliation(s)
- Ji Geng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rong Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao Yuan
- Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou, 215123, PR China
| | - Haidong Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Xinxin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, PR China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer. Cell Death Differ 2020; 27:2710-2725. [PMID: 32327714 PMCID: PMC7429833 DOI: 10.1038/s41418-020-0538-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
ErbB2 overexpression identifies a subclass of breast cancer as ErbB2-positive that is frequently associated with poor prognosis. Current ErbB2-targeted therapies have profoundly improved patient outcomes, but mutations occurring in ErbB2 have been shown to confer drug resistance. Induction of ErbB2 degradation was proposed as an intriguing strategy to battle with ErbB2-positive breast cancer and reduced mutation-incurred drug resistance. Although multiple HSP90 inhibitors have been demonstrated to effectively trigger ErbB2 degradation, none succeeded in the clinical evaluations. To develop novel ErbB2-targeting strategies, we investigated the endocytic degradation and reversible ubiquitylation of ErbB2 in breast cancer. In this study, we reveal that HSP90 inhibition leads to efficient ubiquitylation and endocytic degradation of ErbB2 through the canonical endo-lysosomal route. USP2 associates with internalized ErbB2 and prevents its lysosomal sorting and degradation via exerting deubiquitylase activity. Accordingly, the USP2 inhibitor ML364 is capable of inducing ErbB2 ubiquitylation and accelerating its turnover. ML364 potentiates the pro-degradation effects of HSP90 inhibitors on ErbB2 and hence sensitizes ErbB2-positive breast cancer cells to HSP90 inhibition. The combination of USP2 and HSP90 inhibitors effectively restrains ErbB2-positive breast cancer xenograft growth in vivo. Based on these observations, we conclude that USP2 safeguards ErbB2 surface levels by antagonizing its ubiquitylation-mediated endocytic degradation, which can be exploited to design novel therapeutic strategies against ErbB2-driven malignancies as combinatorial treatment with HSP90 inhibitors.
Collapse
|
10
|
A Bispecific Inhibitor of the EGFR/ADAM17 Axis Decreases Cell Proliferation and Migration of EGFR-Dependent Cancer Cells. Cancers (Basel) 2020; 12:cancers12020411. [PMID: 32050662 PMCID: PMC7072247 DOI: 10.3390/cancers12020411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Dysregulated epidermal growth factor receptor (EGFR) is an oncogenic driver of many human cancers, promoting aberrant cell proliferation, migration, and survival. Pharmacological targeting of EGFR is often challenged by acquired mechanisms of resistance. Ligand-dependent mechanisms in EGFR wild-type cells rely on ligand or receptor overexpression, allowing cells to outcompete inhibitors and perpetuate signaling in an autocrine manner. Importantly, EGFR ligands are synthesized as membrane-bound precursors that must be solubilized to enable receptor-ligand interactions. The A disintegrin and metalloproteinase 17 (ADAM17) is considered the main sheddase of several EGFR ligands, and a potential pharmacological target. However, its broad substrate range and ubiquitous expression complicate its therapeutic targeting. Here, we present a novel bispecific fusion protein construct consisting of the inhibitory prodomain of ADAM17 (TPD), fused to an EGFR-targeting designed ankyrin repeat protein (DARPin). TPD is a natural inhibitor of ADAM17, maintaining the protease in a zymogen-like form. Meanwhile, the high affinity anti-EGFR DARPin E01 binds to EGFR and inhibits ligand binding. The resulting fusion protein E01-GS-TPD retained binding ability to both molecular targets EGFR and ADAM17. The large difference in affinity for each target resulted in enrichment of the fusion protein in EGFR-positive cells compared to EGFR-negative cells, suggesting a possible application in autocrine signaling inhibition. Accordingly, E01-GS-TPD decreased migration and proliferation of EGFR-dependent cell lines with no significant increase in apoptotic cell death. Finally, inhibition of proliferation was observed through EGFR ligand-dependent mechanisms as growth inhibition was not observed in EGFR mutant or KRAS mutant cell lines. The use of bispecific proteins targeting the EGFR/ADAM17 axis could be an innovative strategy for the treatment of EGFR-dependent cancers.
Collapse
|
11
|
Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, Zhang S, Xing C, Qin H, Zhao H, Zhao Z. TIGAR Promotes Tumorigenesis and Protects Tumor Cells From Oxidative and Metabolic Stresses in Gastric Cancer. Front Oncol 2019; 9:1258. [PMID: 31799200 PMCID: PMC6878961 DOI: 10.3389/fonc.2019.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells adopt glycolysis to facilitate the generation of biosynthetic substrates demanded by cell proliferation and growth, and to adapt to stress conditions such as excessive reactive oxygen species (ROS) accumulation. TIGAR (TP53-induced glycolysis and apoptosis regulator) is a fructose-2,6-bisphosphatase that is regulated by p53. TIGAR functions to inhibit glycolysis and promote antioxidative activities, which assists the generation of NADPH to maintain the levels of GSH and thus reduces intracellular ROS. However, the functions of TIGAR in gastric cancer (GC) remain unclear. TIGAR expression levels were detected by immunoblotting and immunohistochemistry in gastric cancer samples, along with four established cell lines of GC. The functions of TIGAR were determined by utilizing shRNA-mediated knockdown experiments. The NADPH/NADP+ ratio, ROS, mitochondrial ATP production, and phosphorus oxygen ratios were determined in TIGAR-depleted cells. Xenograft experiment was conducted with BALB/c nude mice. TIGAR was up-regulated compared with corresponding non-cancerous tissues in primary GCs. TIGAR knockdown significantly reduced cell proliferation and increased apoptosis. TIGAR protected cancer cells from oxidative stress-caused damages, but also glycolysis defects. TIGAR also increased the production of NADPH in gastric cancer cells. TIGAR knockdown led to increased ROS production, elevated mitochondrial ATP production, and phosphorus oxygen ratios. The prognosis of high TIGAR expression patients was significantly poorer than those with low TIGAR expression. Taken together, TIGAR exhibits oncogenic features in GC, which can be evaluated as a target for intervention in the treatment of GC.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Menglang Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuelu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiyue Gao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanni Zhang
- Department of Anesthesia, Dalian Maternal and Child Health Care Hospital, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongbo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zuowei Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Wu Y, Zhang Y, Liu C, Zhang Y, Wang D, Wang S, Wu Y, Liu F, Li Q, Liu X, Zaky MY, Yan D, Liu S. Amplification of USP13 drives non-small cell lung cancer progression mediated by AKT/MAPK signaling. Biomed Pharmacother 2019; 114:108831. [PMID: 30986623 DOI: 10.1016/j.biopha.2019.108831] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
USP13 is emerging as a potential target in cancer therapy. However, the effect of USP13 on tumor progression is controversial. Here we focused on non-small cell lung cancer (NSCLC), a common cancer with high mortality, and studied the role of USP13 in tumor growth. By analysis of multi-level genetic database, we found USP13 is high expressed in heart among healthy primary tissues and is most amplified in lung cancer. Clinical samples of NSCLC showed tumor exhibited high USP13 level compared with adjacent normal tissues. We further utilized lung adenocarcinoma A549 and squamous carcinoma H226 cells as cell model and investigated USP13 effect by USP13 knockdown. As a results, downregulation of USP13 dramatically inhibited A549 and H226 cell proliferation by AKT/MAPK signaling and suppressed tumor growth in nude mice. Collectively, we identified USP13 as a tumor promoter in NSCLC and provide a promising target in cancer therapy.
Collapse
Affiliation(s)
- Yue Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Yingqiu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Congcong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Yang Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Duchuang Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Shanshan Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Yueguang Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Fang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Qiong Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Xiuxiu Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Mohamed Y Zaky
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China; Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Dong Yan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Shuyan Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
13
|
Zhang J, Li Q, Wu Y, Wang D, Xu L, Zhang Y, Wang S, Wang T, Liu F, Zaky MY, Hou S, Liu S, Zou K, Lei H, Zou L, Zhang Y, Liu H. Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. Cell Commun Signal 2019; 17:15. [PMID: 30786890 PMCID: PMC6383291 DOI: 10.1186/s12964-019-0328-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022] Open
Abstract
Background ErbB2 overexpression identifies a subset of breast cancer as ErbB2-positive and is frequently associated with poor clinical outcomes. As a membrane-embedded receptor tyrosine kinase, cell surface levels of ErbB2 are regulated dynamically by membrane physical properties. The present study aims to investigate the influence of membrane cholesterol contents on ErbB2 status and cellular responses to its tyrosine kinase inhibitors. Methods The cholesterol abundance was examined in ErbB2-positive breast cancer cells using filipin staining. Cellular ErbB2 localizations were investigated by immunofluorescence with altered membrane cholesterol contents. The inhibitory effects of the cholesterol-lowering drug lovastatin were assessed using cell proliferation, apoptosis, immunoblotting and immunofluorescence assays. The synergistic effects of lovastatin with the ErbB2 inhibitor lapatinib were evaluated using an ErbB2-positive breast cancer xenograft mouse model. Results Membrane cholesterol contents positively correlated with cell surface distribution of ErbB2 through increasing the rigidity and decreasing the fluidity of cell membranes. Reduction in cholesterol abundance assisted the internalization and degradation of ErbB2. The cholesterol-lowering drug lovastatin significantly potentiated the inhibitory effects of ErbB2 kinase inhibitors, accompanied with enhanced ErbB2 endocytosis. Lovastatin also synergized with lapatinib to strongly suppress the in vivo growth of ErbB2-positive breast cancer xenografts. Conclusion The cell surface distribution of ErbB2 was closely regulated by membrane physical properties governed by cholesterol contents. The cholesterol-lowering medications can hence be exploited for potential combinatorial therapies with ErbB2 kinase inhibitors in the clinical treatment of ErbB2-positive breast cancer.
Collapse
Affiliation(s)
- Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qiong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lu Xu
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mohamed Y Zaky
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Xu L, Zhang Y, Tian K, Chen X, Zhang R, Mu X, Wu Y, Wang D, Wang S, Liu F, Wang T, Zhang J, Liu S, Zhang Y, Tu C, Liu H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:261. [PMID: 30373602 PMCID: PMC6206930 DOI: 10.1186/s13046-018-0929-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PD-L1/PD-1 pathway blockade-mediated immune therapy has shown promising efficacy in the treatment of multiple cancers including melanoma. The present study investigated the effects of the flavonoid apigenin on the PD-L1 expression and the tumorigenesis of melanoma. METHODS The influence of flavonoids on melanoma cell growth and apoptosis was investigated using cell proliferation and flow cytometric analyses. The differential IFN-γ-induced PD-L1 expression and STAT1 activation were examined in curcumin and apigenin-treated melanoma cells using immunoblotting or immunofluorescence assays. The effects of flavonoid treatment on melanoma sensitivity towards T cells were investigated using Jurkat cell killing, cytotoxicity, cell viability, and IL-2 secretion assays. Melanoma xenograft mouse model was used to assess the impact of flavonoids on tumorigenesis in vivo. Human peripheral blood mononuclear cells were used to examine the influence of flavonoids on PD-L1 expression in dendritic cells and cytotoxicity of cocultured cytokine-induced killer cells by cell killing assays. RESULTS Curcumin and apigenin showed growth-suppressive and pro-apoptotic effects on melanoma cells. The IFN-γ-induced PD-L1 upregulation was significantly inhibited by flavonoids, especially apigenin, with correlated reductions in STAT1 phosphorylation. Apigenin-treated A375 cells exhibited increased sensitivity towards T cell-mediated killing. Apigenin also strongly inhibited A375 melanoma xenograft growth in vivo, with enhanced T cell infiltration into tumor tissues. PD-L1 expression in dendritic cells was reduced by apigenin, which potentiated the cytotoxicity of cocultured cytokine-induced killer cells against melanoma cells. CONCLUSIONS Apigenin restricted melanoma growth through multiple mechanisms, among which its suppression of PD-L1 expression exerted a dual effect via regulating both tumor and antigen presenting cells. Our findings provide novel insights into the anticancer effects of apigenin and might have potential clinical implications.
Collapse
Affiliation(s)
- Lu Xu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China
| | - Kang Tian
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xi Chen
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xindi Mu
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Caixia Tu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Han Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|