1
|
Kaur S, Angrish N, Vasudevan M, Khare G. Global proteomics reveals pathways of mesenchymal stem cells altered by Mycobacterium tuberculosis. Sci Rep 2024; 14:30677. [PMID: 39730375 DOI: 10.1038/s41598-024-75722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) has a remarkable ability to persist inside host cells. Several studies showed that M. tb infects and survives inside bone marrow mesenchymal stem cells (BM-MSCs) escaping the host immune system. Here, we have identified various cellular pathways that are modulated in human BM-MSCs upon infection with virulent M. tb and the proteomic profile of these cells varies from that of avirulent M. tb infected cells. We found that virulent M. tb infection reshapes host pathways such as stem cell differentiation, alternative splicing, cytokine production, mitochondrial function etc., which might be modulated by M. tb to persist inside this unconventional niche of human BM-MSCs. Additionally, we observed that virulent M. tb infection suppresses various cellular processes. This study uncovers the differences in the host proteomic profiles resulting from the virulent versus avirulent M. tb infection that can pave the way to identify host-directed therapeutic targets for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genomics and Data Science Unit, Theomics International Pvt. Ltd, Bangalore, 560038, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
2
|
Liu H, Zhang J, Zhao Y, Fan Z, Yang Y, Mao Y, Yang J, Ma S. CD93 regulates breast cancer growth and vasculogenic mimicry through the PI3K/AKT/SP2 signaling pathway activated by integrin β1. J Biochem Mol Toxicol 2024; 38:e23688. [PMID: 38511888 DOI: 10.1002/jbt.23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin β1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin β1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin β1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin β1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Jianhui Zhang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yanjun Zhao
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Zhixiong Fan
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yongheng Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yuanyuan Mao
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Jingyuan Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Shungao Ma
- Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| |
Collapse
|
3
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. Structure 2024; 32:282-291.e4. [PMID: 38218180 DOI: 10.1016/j.str.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The CD93/IGFBP7 axis proteins are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Their upregulation contributes to tumor vascular abnormality and a blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, the interactions of these proteins with each other remain unclear. In this study, we determined a partial structure of the human CD93-IGFBP7 complex comprising the EGF1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides leads for the development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
Affiliation(s)
- Yueming Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Trivigno SMG, Vismara M, Canobbio I, Rustichelli S, Galvagni F, Orlandini M, Torti M, Guidetti GF. The C-Type Lectin Receptor CD93 Regulates Platelet Activation and Surface Expression of the Protease Activated Receptor 4. Thromb Haemost 2024; 124:122-134. [PMID: 37669782 DOI: 10.1055/a-2166-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbβ3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.
Collapse
Affiliation(s)
- Silvia Maria Grazia Trivigno
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Serena Rustichelli
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
5
|
Koop K, Yuan W, Tessadori F, Rodriguez-Polanco WR, Grubbs J, Zhang B, Osmond M, Graham G, Sawyer S, Conboy E, Vetrini F, Treat K, Płoski R, Pienkowski VM, Kłosowska A, Fieg E, Krier J, Mallebranche C, Alban Z, Aldinger KA, Ritter D, Macnamara E, Sullivan B, Herriges J, Alaimo JT, Helbig C, Ellis CA, van Eyk C, Gecz J, Farrugia D, Osei-Owusu I, Adès L, van den Boogaard MJ, Fuchs S, Bakker J, Duran K, Dawson ZD, Lindsey A, Huang H, Baldridge D, Silverman GA, Grant BD, Raizen D, van Haaften G, Pak SC, Rehmann H, Schedl T, van Hasselt P. Macrocephaly and developmental delay caused by missense variants in RAB5C. Hum Mol Genet 2023; 32:3063-3077. [PMID: 37552066 PMCID: PMC10586195 DOI: 10.1093/hmg/ddad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Collapse
Affiliation(s)
- Klaas Koop
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Weimin Yuan
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Wilmer R Rodriguez-Polanco
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeremy Grubbs
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Zhang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Gail Graham
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sarah Sawyer
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
- Marseille Medical Genetics U1251, Aix Marseille University, Marseille, 13005, France
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Elizabeth Fieg
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Coralie Mallebranche
- Unité d'Onco-Hémato-Immunologie pédiatrique, CHU d’Angers, Angers, 49933, France
| | - Ziegler Alban
- Service de génétique, CHU d’Angers, Angers, 49933, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah Ritter
- Department of Pediatrics, Oncology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Catherine Helbig
- The Epilepsy Neurogenetics Initiative, Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA, 19104, USA
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Jozef Gecz
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | | | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lesley Adès
- Department of Clinical Genetics, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2145, Australia
| | - Marie-Jose van den Boogaard
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Sabine Fuchs
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Jeroen Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Karen Duran
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Zachary D Dawson
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Anika Lindsey
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Huiyan Huang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Stephen C Pak
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, 24943, Flensburg, Germany
| | - Tim Schedl
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Peter van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
6
|
Chan CY, Ni YC, Nguyen HD, Wu YF, Lee KH. Identification of Potential Protein Targets in Extracellular Vesicles Isolated from Chemotherapy-Treated Ovarian Cancer Cells. Curr Issues Mol Biol 2023; 45:7417-7431. [PMID: 37754253 PMCID: PMC10528274 DOI: 10.3390/cimb45090469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Despite the ongoing clinical trials and the introduction of novel treatments over the past few decades, ovarian cancer remains one of the most fatal malignancies in women worldwide. Platinum- and paclitaxel-based chemotherapy is effective in treating the majority of patients with ovarian cancer. However, more than 70% of patients experience recurrence and eventually develop chemoresistance. To improve clinical outcomes in patients with ovarian cancer, novel technologies must be developed for identifying molecular alterations following drug-based treatment of ovarian cancer. Recently, extracellular vesicles (EVs) have gained prominence as the mediators of tumor progression. In this study, we used mass spectrometry to identify the changes in EV protein signatures due to different chemotherapeutic agents used for treating ovarian cancer. By examining these alterations, we identified the specific protein induction patterns of cisplatin alone, paclitaxel alone, and a combination of cisplatin and paclitaxel. Specifically, we found that drug sensitivity was correlated with the expression levels of ANXA5, CD81, and RAB5C in patients receiving cisplatin with paclitaxel. Our findings suggest that chemotherapy-induced changes in EV protein signatures are crucial for the progression of ovarian cancer.
Collapse
Affiliation(s)
- Chia-Yi Chan
- Department of Nursing, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Chun Ni
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Duc Nguyen
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wanfang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
8
|
Zeng Q, Zheng H, Heng BC, Yao W, Yang Y, Jiang S, Deng X. Chirality-biased protein expression profile during early stages of bone regeneration. Front Bioeng Biotechnol 2023; 11:1217919. [PMID: 37533694 PMCID: PMC10393040 DOI: 10.3389/fbioe.2023.1217919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Chirality is a crucial mechanical cue within the extracellular matrix during tissue repair and regeneration. Despite its key roles in cell behavior and regeneration efficacy, our understanding of chirality-biased protein profile in vivo remains unclear. Methods: In this study, we characterized the proteomic profile of proteins extracted from bone defect areas implanted with left-handed and right-handed scaffold matrices during the early healing stage. We identified differentially-expressed proteins between the two groups and detected heterogenic characteristic signatures on day 3 and day 7 time points. Results: Proteomic analysis showed that left-handed chirality could upregulate cell adhesion-related and GTPase-related proteins on day 3 and day 7. Besides, interaction analysis and in vitro verification results indicated that the left-handed chiral scaffold material activated Rho GTPase and Akt1, ultimately leading to M2 polarization of macrophages. Discussion: In summary, our study thus improved understanding of the regenerative processes facilitated by chiral materials by characterizing the protein atlas in the context of bone defect repair and exploring the underlying molecular mechanisms of chirality-mediated polarization differences in macrophages.
Collapse
Affiliation(s)
- Qiang Zeng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | | | - Yue Yang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Tossetta G, Piani F, Borghi C, Marzioni D. Role of CD93 in Health and Disease. Cells 2023; 12:1778. [PMID: 37443812 PMCID: PMC10340406 DOI: 10.3390/cells12131778] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
CD93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp), is a transmembrane glycoprotein encoded by a gene located on 20p11.21 and composed of 652 amino acids. CD93 can be present in two forms: soluble (sCD93) and membrane-bound (CD93). CD93 is mainly expressed on endothelial cells, where it plays a key role in promoting angiogenesis both in physiology and disease, such as age-related macular degeneration and tumor angiogenesis. In fact, CD93 is highly expressed in tumor-associated vessels and its presence correlates with a poor prognosis, poor immunotherapy response, immune cell infiltration and high tumor, node and metastasis (TNM) stage in many cancer types. CD93 is also expressed in hematopoietic stem cells, cytotrophoblast cells, platelets and many immune cells, i.e., monocytes, neutrophils, B cells and natural killer (NK) cells. Accordingly, CD93 is involved in modulating important inflammatory-associated diseases including systemic sclerosis and neuroinflammation. Finally, CD93 plays a role in cardiovascular disease development and progression. In this article, we reviewed the current literature regarding the role of CD93 in modulating angiogenesis, inflammation and tumor growth in order to understand where this glycoprotein could be a potential therapeutic target and could modify the outcome of the abovementioned pathologies.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Federica Piani
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
10
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543655. [PMID: 37333140 PMCID: PMC10274810 DOI: 10.1101/2023.06.07.543655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The CD93/IGFBP7 axis are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Upregulation of them contributes to tumor vascular abnormality and blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, how these two proteins associated to each other remains unclear. In this study, we solved the human CD93-IGFBP7 complex structure to elucidate the interaction between the EGF 1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed the binding interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides hints for development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
|
11
|
Perez Bay AE, Faulkner D, DaSilva JO, Young TM, Yang K, Giurleo JT, Ma D, Delfino FJ, Olson WC, Thurston G, Daly C, Andreev J. A Bispecific METxMET Antibody-Drug Conjugate with Cleavable Linker Is Processed in Recycling and Late Endosomes. Mol Cancer Ther 2023; 22:357-370. [PMID: 36861363 PMCID: PMC9978886 DOI: 10.1158/1535-7163.mct-22-0414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 03/03/2023]
Abstract
Most antibody-drug conjugates (ADC) approved for the treatment of cancer contain protease-cleavable linkers. ADCs that traffic to lysosomes traverse highly acidic late endosomes, while ADCs that recycle to the plasma membrane traffic through mildly acidic sorting and recycling endosomes. Although endosomes have been proposed to process cleavable ADCs, the precise identity of the relevant compartments and their relative contributions to ADC processing remain undefined. Here we show that a METxMET biparatopic antibody internalizes into sorting endosomes, rapidly traffics to recycling endosomes, and slowly reaches late endosomes. In agreement with the current model of ADC trafficking, late endosomes are the primary processing site of MET, EGFR, and prolactin receptor ADCs. Interestingly, recycling endosomes contribute up to 35% processing of the MET and EGFR ADCs in different cancer cells, mediated by cathepsin-L, which localizes to this compartment. Taken together, our findings provide insight into the relationship between transendosomal trafficking and ADC processing and suggest that receptors that traffic through recycling endosomes might be suitable targets for cleavable ADCs.
Collapse
Affiliation(s)
- Andres E Perez Bay
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Devon Faulkner
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - John O DaSilva
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Tara M Young
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Katie Yang
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Jason T Giurleo
- Therapeutic Proteins Department, Regeneron Pharmaceuticals, Inc., New York, New York
| | - Dangshe Ma
- Therapeutic Proteins Department, Regeneron Pharmaceuticals, Inc., New York, New York
| | - Frank J Delfino
- Therapeutic Proteins Department, Regeneron Pharmaceuticals, Inc., New York, New York
| | - William C Olson
- Therapeutic Proteins Department, Regeneron Pharmaceuticals, Inc., New York, New York
| | - Gavin Thurston
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Christopher Daly
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| | - Julian Andreev
- Oncology and Angiogenesis Department, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, New York
| |
Collapse
|
12
|
Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare KA, Rose IVL, Sturgeon SM, Neal EH, Ao Y, Wang S, Sofroniew MV, Brunger JM, McMahon DG, Schrag MS, Kampmann M, Lippmann ES. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun 2022; 13:6581. [PMID: 36323693 PMCID: PMC9630454 DOI: 10.1038/s41467-022-34412-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Astrocytes are critical components of the neurovascular unit that support blood-brain barrier (BBB) function. Pathological transformation of astrocytes to reactive states can be protective or harmful to BBB function. Here, using a human induced pluripotent stem cell (iPSC)-derived BBB co-culture model, we show that tumor necrosis factor (TNF) transitions astrocytes to an inflammatory reactive state that causes BBB dysfunction through activation of STAT3 and increased expression of SERPINA3, which encodes alpha 1-antichymotrypsin (α1ACT). To contextualize these findings, we correlated astrocytic STAT3 activation to vascular inflammation in postmortem human tissue. Further, in murine brain organotypic cultures, astrocyte-specific silencing of Serpina3n reduced vascular inflammation after TNF challenge. Last, treatment with recombinant Serpina3n in both ex vivo explant cultures and in vivo was sufficient to induce BBB dysfunction-related molecular changes. Overall, our results define the TNF-STAT3-α1ACT signaling axis as a driver of an inflammatory reactive astrocyte signature that contributes to BBB dysfunction.
Collapse
Affiliation(s)
- Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhee Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Suil Kim
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kate Mlouk
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah M Sturgeon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Matthew S Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Dimerization of the C-type lectin-like receptor CD93 promotes its binding to Multimerin-2 in endothelial cells. Int J Biol Macromol 2022; 224:453-464. [DOI: 10.1016/j.ijbiomac.2022.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
14
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
15
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
16
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
17
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
18
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
19
|
Tong W, Wang G, Zhu L, Bai Y, Liu Z, Yang L, Wu H, Cui T, Zhang Y. Pan-Cancer Analysis Identified CD93 as a Valuable Biomarker for Predicting Patient Prognosis and Immunotherapy Response. Front Mol Biosci 2022; 8:793445. [PMID: 35265666 PMCID: PMC8900912 DOI: 10.3389/fmolb.2021.793445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The rapid development of immunotherapy has significantly improved patient outcomes in recent years. CD93, a novel biomarker expressed on vascular endothelial cells, is essential for tumor angiogenesis. Recent studies have shown that CD93 is closely related to immune cell infiltration and immunotherapy. However, its role in pan-cancer has not been reported. Methods: The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), cbioportal, Gene Expression Omnibus (GEO), Tumor Immune Estimation Resource (TIMER2.0), and the Tumor–Immune System Interactions and Drug Bank (TISIDB) databases were used to analyze CD93 in pan-cancers. R software was used for statistical analysis and mapping. Results: There were significant differences in the expression of CD93 between tumor tissues and adjacent normal tissues in pan-cancer. The high expression of CD93 was associated with poor prognosis and high TNM stage in multiple tumor types. However, a high expression of CD93 was a protective factor in kidney renal clear cell carcinoma (KIRC). In addition, CD93 was closely related to immune cell infiltration in tumor tissues. Moreover, CD93 presented a robust correlation with immune modulators and immunotherapeutic markers [e.g., tumor mutation burden (TMB) and microsatellite instability (MSI)]. The results of gene set enrichment analysis (GSEA) showed that CD93 was correlated with tumor angiogenesis. Importantly, patients with a low expression of CD93 were more sensitive to immunotherapy in urothelial cancer. Conclusion: CD93, which is involved in various immune responses, controls immune cell infiltration and impacts on the malignant properties of various cancer types. Therefore, CD93 has potential value to be biomarker for determining the prognosis and immune infiltration in multiple cancers.
Collapse
Affiliation(s)
- Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Guangyu Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Liuyang Zhu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hao Wu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Tao Cui
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Yamin Zhang,
| |
Collapse
|
20
|
Barbera S, Raucci L, Lugano R, Tosi GM, Dimberg A, Santucci A, Galvagni F, Orlandini M. CD93 Signaling via Rho Proteins Drives Cytoskeletal Remodeling in Spreading Endothelial Cells. Int J Mol Sci 2021; 22:ijms222212417. [PMID: 34830297 PMCID: PMC8622518 DOI: 10.3390/ijms222212417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Luisa Raucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Gian Marco Tosi
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
- Correspondence:
| |
Collapse
|
21
|
Mei H, Zha Z, Wang W, Xie Y, Huang Y, Li W, Wei D, Zhang X, Qu J, Liu J. Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biol 2021; 22:297. [PMID: 34686207 PMCID: PMC8532573 DOI: 10.1186/s13059-021-02513-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Rhinoviruses (RVs) cause more than half of common colds and, in some cases, more severe diseases. Functional genomics analyses of RVs using siRNA or genome-wide CRISPR screen uncovered a limited set of host factors, few of which have proven clinical relevance. Results Herein, we systematically compare genome-wide CRISPR screen and surface protein-focused CRISPR screen, referred to as surfaceome CRISPR screen, for their efficiencies in identifying RV host factors. We find that surfaceome screen outperforms the genome-wide screen in the success rate of hit identification. Importantly, using the surfaceome screen, we identify olfactomedin-like 3 (OLFML3) as a novel host factor of RV serotypes A and B, including a clinical isolate. We find that OLFML3 is a RV-inducible suppressor of the innate immune response and that OLFML3 antagonizes type I interferon (IFN) signaling in a SOCS3-dependent manner. Conclusion Our study suggests that RV-induced OLFML3 expression is an important mechanism for RV to hijack the immune system and underscores surfaceome CRISPR screen in identifying viral host factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02513-w.
Collapse
Affiliation(s)
- Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China. .,Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China. .,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, People's Republic of China. .,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou Interntional Bio Island, Guangdong Province, 510005, Guangzhou, China.
| |
Collapse
|
22
|
Zhang Y, Su H, Wudu M, Ren H, Xu Y, Zhang Q, Jiang J, Wang Q, Jiang X, Zhang B, Liu Z, Zou Z, Qiu X. TBC1 domain family member 23 interacts with Ras-related protein Rab-11A to promote poor prognosis of non-small-cell lung cancer via β1-integrin. J Cell Mol Med 2021; 25:8821-8835. [PMID: 34363324 PMCID: PMC8435452 DOI: 10.1111/jcmm.16841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. TBC1D23, a member of the TBC/RABGAP family, is widely expressed in human tissues; however, its role in NSCLC is currently unknown. Immunohistochemical analysis was conducted on 173 paraffin‐embedded lung tissue sections from patients with NSCLC from 2014 to 2018 at the First Affiliated Hospital of China Medical University. MTT, colony formation assay, cell cycle assay, scratch assay, transwell assay, Western blotting and real‐time PCR were employed on multiple NSCLC cell lines modified to knock down or overexpress TBC1D23/RAB11A. Immunoprecipitation, immunoprecipitation‐mass spectrometry, immunofluorescence and flow cytometry were performed to explore the interaction between TBC1D23 and RAB11A and TBC1D23 involvement in the interaction between RAB11A and β1 integrin in the para‐nucleus. TBC1D23 was correlated with tumour size, differentiation degree, metastasis, TNM stage and poor prognosis. TBC1D23 was involved in the interaction between RAB11A and β1 integrin in the para‐nucleus, thus activating the β1 integrin/FAK/ERK signalling pathway to promote NSCLC. Furthermore, TBC1D23 promoted NSCLC progression by inducing cell proliferation, migration and invasion. This study indicated the relationship between TBC1D23 expression and the adverse clinicopathological characteristics of patients with NSCLC, suggesting that TBC1D23 may be an important target for NSCLC treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zifang Zou
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| |
Collapse
|
23
|
Zhang D, Li B, Guo R, Wu J, Yang C, Jiang X, Zhang C, Yan H, Zhao Q, Wang Z, Wang Q, Huang R, Zhang Z, Hu X, Gao L. RAB5C, SYNJ1, and RNF19B promote male ankylosing spondylitis by regulating immune cell infiltration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1011. [PMID: 34277811 PMCID: PMC8267299 DOI: 10.21037/atm-21-2721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Background This study aimed to identify the key genes related to male ankylosing spondylitis (AS) and to analyze the role of immune cell infiltration in the pathological process of this disease. Methods The AS dataset was downloaded from the Gene Expression Omnibus (GEO) public database, and the data of male healthy controls (M_HC) and male AS patients (M_AS) were extracted. R software was used to identify differentially expressed genes (DEGs). Functional and pathway enrichment analysis of the DEGs was performed. A protein-protein interaction (PPI) network was constructed, and the hub genes were screened out. All expression profile data were analyzed by weighted correlation network analysis (WGCNA) to screen out the hub genes, which were then intersected with the hub genes from the PPI network to obtain the key genes. Finally, the difference in immune cell infiltration in the two sets of samples was evaluated with CIBERSORT, and the correlation between the key genes and infiltrating immune cells was analyzed. Results A total of 689 DEGs were obtained, of which 395 genes were up-regulated and 294 genes were down-regulated. Functional and pathway enrichment analysis showed that DEGs were mainly enriched in pathways related to immune response. Based on the PPI analysis, five clusters with high scores were selected. Through WGCNA, 14 gene modules were obtained. The green module with the highest correlation was selected and intersected with the cluster previously obtained to obtain three key genes, RAB5C, SYNJ1, and RNF19B. Immune infiltration analysis found that monocytes and gamma delta T cells may be involved in the process of AS. Also, RAB5C, SYNJ1, and RNF19B are all related to increased levels of monocytes and macrophages. Conclusions RAB5C, SYNJ1, and RNF19B are key DEGs expressed in M_AS and may play a role in the disease’s occurrence and development through regulating immune cell functions.
Collapse
Affiliation(s)
- Di Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Eighth Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Guo
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jionglin Wu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xumin Hu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Barbera S, Lugano R, Pedalina A, Mongiat M, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The C-type lectin CD93 controls endothelial cell migration via activation of the Rho family of small GTPases. Matrix Biol 2021; 99:1-17. [PMID: 34062268 DOI: 10.1016/j.matbio.2021.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cell migration is essential to angiogenesis, enabling the outgrowth of new blood vessels both in physiological and pathological contexts. Migration requires the activation of several signaling pathways, the elucidation of which expands the opportunity to develop new drugs to be used in antiangiogenic therapy. In the proliferating endothelium, the interaction between the transmembrane glycoprotein CD93 and the extracellular matrix activates signaling pathways that regulate cell adhesion, migration, and vascular maturation. Here we identify a pathway, comprising CD93, the adaptor proteins Cbl and Crk, and the small GTPases Rac1, Cdc42, and RhoA, which we propose acts as a regulator of cytoskeletal movements responsible for endothelial cell migration. In this framework, phosphorylation of Cbl on tyrosine 774 leads to the interaction with Crk, which acts as a downstream integrator in the CD93-mediated signaling regulating cell polarity and migration. Moreover, confocal microscopy analyses of GTPase biosensors show that CD93 drives coordinated activation of Rho-proteins at the cell edge of migratory endothelial cells. In conclusion, together with the demonstration of the key contribution of CD93 to the migratory process in living cells, these findings suggest that the signaling triggered by CD93 converges to the activation and modulation of the Rho GTPase signaling pathways regulating cell dynamics.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Alessia Pedalina
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
25
|
Wang L, Li C, Zhang X, Yang M, Wei S, Huang Y, Qin Q, Wang S. The Small GTPase Rab5c Exerts Bi-Function in Singapore Grouper Iridovirus Infections and Cellular Responses in the Grouper, Epinephelus coioides. Front Immunol 2020; 11:2133. [PMID: 33013900 PMCID: PMC7495150 DOI: 10.3389/fimmu.2020.02133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Rab5 is one of the master regulators of vesicular trafficking that participates in early stages of the endocytic pathway, such as endocytosis and endosome maturation. Three Rab5 isoforms (a, b, and c) share high sequence identity, and exhibit complex functions. However, the role of Rab5c in virus infection and cellular immune responses remains poorly understood. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected grouper spleen (GS) cells, we investigated the role of Rab5c in virus infection and host immune responses. Rab5c was cloned from the orange-spotted grouper, Epinephelus coioides, and termed EcRab5c. EcRab5c encoded a 220-amino-acid polypeptide, showing 99% and 91% identity to Anabas testudineus, and Homo sapiens, respectively. Confocal imaging showed that EcRab5c localized as punctate structures in the cytoplasm. However, a constitutively active (CA) EcRab5c mutant led to enlarged vesicles, while a dominant negative (DN) EcRab5c mutant reduced vesicle structures. EcRab5c expression levels were significantly increased after SGIV infection. EcRab5c knockdown, or CA/DN EcRab5c overexpression significantly inhibited SGIV infection. Using single-particle imaging analysis, we further observed that EcRab5c disruption impaired crucial events at the early stage of SGIV infection, including virus binding, entry, and transport from early to late endosomes, at the single virus level. Furthermore, it is the first time to investigate that EcRab5c is required in autophagy. Equally, EcRab5c positively regulated interferon-related factors and pro-inflammatory cytokines. In summary, these data showed that EcRab5c exerted a bi-functional role on iridovirus infection and host immunity in fish, which furthers our understanding of virus and host immune interactions.
Collapse
Affiliation(s)
- Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
26
|
Tosi GM, Neri G, Barbera S, Mundo L, Parolini B, Lazzi S, Lugano R, Poletto E, Leoncini L, Pertile G, Mongiat M, Dimberg A, Galvagni F, Orlandini M. The Binding of CD93 to Multimerin-2 Promotes Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32697305 PMCID: PMC7425738 DOI: 10.1167/iovs.61.8.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to investigate the involvement of CD93 and Multimerin-2 in three choroidal neovascularization (CNV) models and to evaluate their contribution in the neovascular progression of age-related macular degeneration (AMD). Methods Choroidal neovascular membranes collected during surgery from AMD patients were analyzed by microscopy methods. Laser-induced CNV mouse models and choroid sprouting assays (CSAs) were carried out using the CD93 knockout mouse model. An original ex vivo CSA of vascular angiogenesis, employing choroid tissues isolated from human donors, was developed. Results In contrast to healthy choroid endothelium, hyperproliferative choroidal endothelial cells (ECs) of AMD patients expressed high levels of CD93, and Multimerin-2 was abundantly deposited along the choroidal neovasculature. CD93 knockout mice showed a significant reduced neovascularization after laser photocoagulation, and their choroidal ECs displayed a decreased ability to produce sprouts in ex vivo angiogenesis assays. Moreover, the presence of an antibody able to hamper the CD93/Multimerin-2 interaction reduced vascular sprouting in the human CSA. Conclusions Our results demonstrate that CD93 and its interaction with Multimerin-2 play an important role in pathological vascularization of the choroid, disclosing new possibilities for therapeutic intervention to neovascular AMD.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giovanni Neri
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Grazia Pertile
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Pellicani R, Poletto E, Andreuzzi E, Paulitti A, Doliana R, Bizzotto D, Braghetta P, Colladel R, Tarticchio G, Sabatelli P, Bucciotti F, Bressan G, Iozzo RV, Colombatti A, Bonaldo P, Mongiat M. Multimerin-2 maintains vascular stability and permeability. Matrix Biol 2020; 87:11-25. [DOI: 10.1016/j.matbio.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
28
|
Heng J, Lv P, Zhang Y, Cheng X, Wang L, Ma D, Liu F. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol 2020; 18:e3000696. [PMID: 32275659 PMCID: PMC7176290 DOI: 10.1371/journal.pbio.3000696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that various developmental signals play diverse roles in hematopoietic stem and progenitor cell (HSPC) production; however, how these signaling pathways are orchestrated remains incompletely understood. Here, we report that Rab5c is essential for HSPC specification by endocytic trafficking of Notch and AKT signaling in zebrafish embryos. Rab5c deficiency leads to defects in HSPC production. Mechanistically, Rab5c regulates hemogenic endothelium (HE) specification by endocytic trafficking of Notch ligands and receptor. We further show that the interaction between Rab5c and Appl1 in the endosome is required for the survival of HE in the ventral wall of the dorsal aorta through AKT signaling. Interestingly, Rab5c overactivation can also lead to defects in HSPC production, which is attributed to excessive endolysosomal trafficking inducing Notch signaling defect. Taken together, our findings establish a previously unrecognized role of Rab5c-mediated endocytic trafficking in HSPC development and provide new insights into how spatiotemporal signals are orchestrated to accurately execute cell fate transition. Cell-autonomous Notch signaling regulated by the membrane trafficking protein Rab5c plays an instructive role in hematopoietic stem and progenitor cell specification, while the AKT signaling seems to provide a permissive signal to maintain hemogenic endothelium survival.
Collapse
Affiliation(s)
- Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinjie Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|