1
|
Rutherford KA, McManus KJ. PROTACs: Current and Future Potential as a Precision Medicine Strategy to Combat Cancer. Mol Cancer Ther 2024; 23:454-463. [PMID: 38205881 PMCID: PMC10985480 DOI: 10.1158/1535-7163.mct-23-0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Proteolysis targeting chimeras (PROTAC) are an emerging precision medicine strategy, which targets key proteins for proteolytic degradation to ultimately induce cancer cell killing. These hetero-bifunctional molecules hijack the ubiquitin proteasome system to selectively add polyubiquitin chains onto a specific protein target to induce proteolytic degradation. Importantly, PROTACs have the capacity to target virtually any intracellular and transmembrane protein for degradation, including oncoproteins previously considered undruggable, which strategically positions PROTACs at the crossroads of multiple cancer research areas. In this review, we present normal functions of the ubiquitin regulation proteins and describe the application of PROTACs to improve the efficacy of current broad-spectrum therapeutics. We subsequently present the potential for PROTACs to exploit specific cancer vulnerabilities through synthetic genetic approaches, which may expedite the development, translation, and utility of novel synthetic genetic therapies in cancer. Finally, we describe the challenges associated with PROTACs and the ongoing efforts to overcome these issues to streamline clinical translation. Ultimately, these efforts may lead to their routine clinical use, which is expected to revolutionize cancer treatment strategies, delay familial cancer onset, and ultimately improve the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Kailee A. Rutherford
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciencs, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciencs, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Karaś K, Karwaciak I, Chałaśkiewicz K, Sałkowska A, Pastwińska J, Bachorz RA, Ratajewski M. Anti-hepatocellular carcinoma activity of the cyclin-dependent kinase inhibitor AT7519. Biomed Pharmacother 2023; 164:115002. [PMID: 37311277 DOI: 10.1016/j.biopha.2023.115002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancerous tumors and one of the leading causes of death among cancer-related disorders. Chemotherapy is ineffective in HCC patients, and the number of drugs that are in use is limited. Thus, new molecules are needed that could increase the effectiveness of anti-HCC regimens. Here, we show that AT7519, a CDK inhibitor, exerts positive effects on HCC cells: it inhibits proliferation, migration and clonogenicity. Detailed analysis of the transcriptomes of cells treated with this compound indicated that AT7519 affects a substantial portion of genes that are associated with HCC development and progression. Moreover, we showed that the concomitant use of AT7519 with gefitinib or cabozantinib sensitized HCC cells to these drugs. Thus, our research indicates that AT7519 is worth considering in monotherapy for hepatocellular carcinoma patients or in combination with other drugs, e.g., gefitinib or cabozantinib.
Collapse
Affiliation(s)
- Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
3
|
FBXL16 Promotes Endometrial Progesterone Resistance via PP2AB55α/Cyclin D1 Axis in Ishikawa. J Immunol Res 2022; 2022:7372202. [PMID: 36106050 PMCID: PMC9467819 DOI: 10.1155/2022/7372202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are essential components of the E3 ubiquitin ligases which are involved in the regulation of almost all life activities such as cell cycle, proliferation, and apoptosis, which have become an important research and drug target. However, there are few studies on F-box and leucine-rich repeat protein 16 (FBXL16) in endometrial carcinoma. Methods Clinical samples were collected for determining the correlation between FBXL16 and endometrial carcinoma. Cells were screened and established with Ishikawa cells which proved the fundamental role of FBXL16 in regulating cell proliferation and cell cycle. The MPA-resistant endometrial carcinoma cell line Ishikawa/MPA was established. FBXL16, PP2AB55α, and cyclin D1 were analyzed separately in MPA sensitive and resistant Ishikawa cells in vitro and in vivo. Results The high expression of FBXL16 was positively correlated with MPA resistance and poor prognosis of endometrial cancer. MPA tolerance of endometrial cancer cells was inhibited by knockdown of FBXL16 in DNA content assessment, CCK-8, and colony formation. It was confirmed that FBXL16 inhibited the activity of substrate PP2AB55α by binding to PP2A, reduced the phosphorylation level at Thr308 site of AKT1, inhibited the expression of GSK-3β, and thus led to a significant decrease in the phosphorylation level of cyclin D1, which prevented the ubiquitination recognition and degradation of cyclin D1. Conclusion In our experiments, FBXL16 binds PP2A to promote the dephosphorylation of Thr286 site of cyclin D1 via AKT1/GSK3β/cyclin D1 pathway, which is required for resisting the ubiquitination degradation and enhances the MPA resistance of Ishikawa.
Collapse
|
4
|
Park J, An G, Lim W, Song G. Dinitramine induces implantation failure by cell cycle arrest and mitochondrial dysfunction in porcine trophectoderm and luminal epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128927. [PMID: 35489316 DOI: 10.1016/j.jhazmat.2022.128927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The herbicide market is growing rapidly, as weed control is a significant challenge in agriculture. Many studies have reported the toxicity of herbicides to non-target organisms. Dinitramine is a dinitroaniline herbicide that is particularly toxic to aquatic organisms. However, little is known about the effects of dinitramine on the female reproductive system. Therefore, in the present study, we utilized porcine trophectoderm (pTr) cells and porcine endometrial luminal epithelial (pLE) cells to verify the reproductive toxicity of dinitramine. Dinitramine reduced the viability of both cell types, by triggering cell cycle arrest, especially at the sub-G1 phase, and increasing apoptosis, inhibiting DNA replication. Dinitramine disrupted intracellular calcium homeostasis and induced oxidative stress by producing reactive oxygen species, leading to the loss of mitochondrial membrane potential and alteration of mitochondrial respiration. Mitogen-activated protein kinase pathways were altered, and migration decreased in pTr and pLE cells after dinitramine treatment; the expression of pregnancy-related genes in these cells was decreased. Thus, dinitramine reduced the viability and migratory capacity of both cell types, and this could interrupt the early stages of pregnancy.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun 2022; 13:2436. [PMID: 35508466 PMCID: PMC9068765 DOI: 10.1038/s41467-022-29960-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-β-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome. Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated tumours and lacked information about the phosphoproteome. Here, the authors present a comprehensive HCC proteogenomics and phosphoproteomics study in patient samples from multiple etiologies and stages.
Collapse
|
6
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
7
|
Cyclin E1 in Murine and Human Liver Cancer: A Promising Target for Therapeutic Intervention during Tumour Progression. Cancers (Basel) 2021; 13:cancers13225680. [PMID: 34830835 PMCID: PMC8616292 DOI: 10.3390/cancers13225680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The cell cycle regulator Cyclin E1 is a key mediator and biomarker of liver cancer progression in mice and man independent of its canonical interacting partner Cyclin-dependent kinase 2. Over-expression of Cyclin E1 during hepatocarcinogenesis modulates several distinct biological processes such as proliferation, DNA damage response, stemness, invasion and the tumour microenvironment. Interventional depletion of Cyclin E1 in the course of liver cancer progression significantly reduces tumour burden. In contrast, the expression of Cyclin-dependent kinase 2 is dispensable for the progression of liver cancer in mice and lacked diagnostic or prognostic value in patients. Thus, specific inhibition of Cyclin E1 expression represents a promising strategy for the treatment of liver cancer. Abstract Cyclin E1 (CCNE1) is a regulatory subunit of Cyclin-dependent kinase 2 (CDK2) and is thought to control the transition of quiescent cells into cell cycle progression. Recently, we identified CCNE1 and CDK2 as key factors for the initiation of hepatocellular carcinoma (HCC). In the present study, we dissected the contributions of CCNE1 and CDK2 for HCC progression in mice and patients. Therefore, we generated genetically modified mice allowing inducible deletion of Ccne1 or Cdk2. After initiation of HCC, using the hepatocarcinogen diethylnitrosamine (DEN), we deleted Ccne1 or Cdk2 and subsequently analysed HCC progression. The relevance of CCNE1 or CDK2 for human HCC progression was investigated by in silico database analysis. Interventional deletion of Ccne1, but not of Cdk2, substantially reduced the HCC burden in mice. Ccne1-deficient HCCs were characterised by attenuated proliferation, impaired DNA damage response and downregulation of markers for stemness and microinvasion. Additionally, the tumour microenvironment of Ccne1-deficient mice showed a reduction in immune mediators, myeloid cells and cancer-associated fibroblasts. In sharp contrast, Cdk2 was dispensable for HCC progression in mice. In agreement with our mouse data, CCNE1 was overexpressed in HCC patients independent of risk factors, and associated with reduced disease-free survival, a common signature for enhanced chromosomal instability, proliferation, dedifferentiation and invasion. However, CDK2 lacked diagnostic or prognostic value in HCC patients. In summary, CCNE1 drives HCC progression in a CDK2-independent manner in mice and man. Therefore, interventional inactivation of CCNE1 represents a promising strategy the treatment of liver cancer.
Collapse
|
8
|
Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021; 15:39. [PMID: 34187556 PMCID: PMC8243535 DOI: 10.1186/s40246-021-00341-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. Methods GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. Results In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. Conclusions The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
Collapse
|
9
|
Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death Dis 2021; 12:179. [PMID: 33589591 PMCID: PMC7884408 DOI: 10.1038/s41419-021-03457-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Human epidermal growth factor receptor 2 gene (HER2) is focally amplified in approximately 20% of breast cancers. HER2 inhibitors alone are not effective, and sensitizing agents will be necessary to move away from a reliance on heavily toxic chemotherapeutics. We recently demonstrated that the efficacy of HER2 inhibitors is mitigated by uniformly low levels of the myeloid cell leukemia 1 (MCL-1) endogenous inhibitor, NOXA. Emerging clinical data have demonstrated that clinically advanced cyclin-dependent kinase (CDK) inhibitors are effective MCL-1 inhibitors in patients, and, importantly, well tolerated. We, therefore, tested whether the CDK inhibitor, dinaciclib, could block MCL-1 in preclinical HER2-amplified breast cancer models and therefore sensitize these cancers to dual HER2/EGFR inhibitors neratinib and lapatinib, as well as to the novel selective HER2 inhibitor tucatinib. Indeed, we found dinaciclib suppresses MCL-1 RNA and is highly effective at sensitizing HER2 inhibitors both in vitro and in vivo. This combination was tolerable in vivo. Mechanistically, liberating the effector BCL-2 protein, BAK, from MCL-1 results in robust apoptosis. Thus, clinically advanced CDK inhibitors may effectively combine with HER2 inhibitors and present a chemotherapy-free therapeutic strategy in HER2-amplified breast cancer, which can be tested immediately in the clinic.
Collapse
|
10
|
Zhang N, Zhang S, Wu W, Lu W, Jiang M, Zheng N, Huang J, Wang L, Liu H, Zheng M, Wang J. Regorafenib inhibits migration, invasion, and vasculogenic mimicry of hepatocellular carcinoma via targeting ID1-mediated EMT. Mol Carcinog 2021; 60:151-163. [PMID: 33428809 DOI: 10.1002/mc.23279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Regorafenib is approved for patients with unresectable hepatocellular carcinoma (HCC) following sorafenib. However, the effect of regorafenib on HCC metastasis and its mechanism are poorly understood. Here, our data showed that regorafenib significantly restrained the migration, invasion and vasculogenic mimicry (VM) of HCC cells, and downregulated the expression of epithelial-to-mesenchymal transition (EMT)/VM-related molecules. Using RNA-seq and cellular thermal shift assays, we found that inhibitor of differentiation 1 (ID1) was a key target of regorafenib. In HCC tissues, the protein expression of ID1 was positively correlated with EMT and VM formation (CD34- /PAS+ ). Functionally, ID1 knockdown inhibited HCC cell migration, invasion, metastasis, and VM formation in vitro and in vivo, with upregulation of E-cadherin and downregulation of Snail and VE-cadherin. Moreover, Snail overexpression promoted the migration, invasion, and VM formation of ID1 knockdown cells. Snail knockdown reduced the migration, invasion, and VM formation of ID1 overexpression cells. Finally, regorafenib suppressed VM formation and decreased the expression of ID1, VE-cadherin and Snail in HCC PDX model. In conclusion, we manifested that regorafenib distinctly inhibited EMT in HCC cells via targeting ID1, leading to the suppression of cell migration, invasion and VM formation. These findings suggest that regorafenib may be developed as a suitable therapeutic agent for HCC metastasis.
Collapse
Affiliation(s)
- Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Shaoqin Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Wenda Wu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Wenxian Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mingting Jiang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Ning Zheng
- Department of Pharmacology, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, The School of Pharmacy, Fujian Medical University, Fujian, China
| | - Jing Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| |
Collapse
|
11
|
Liao Y, Wu N, Wang K, Wang M, Wang Y, Gao J, Zhong B, Ma F, Wu Y, Jiang N. OTUB1 Promotes Progression and Proliferation of Prostate Cancer via Deubiquitinating and Stabling Cyclin E1. Front Cell Dev Biol 2021; 8:617758. [PMID: 33537306 PMCID: PMC7848094 DOI: 10.3389/fcell.2020.617758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Prostate cancer (PCa) is currently the most common cancer among males worldwide. It has been reported that OTUB1 plays a critical role in a variety of tumors and is strongly related to tumor proliferation, migration, and clinical prognosis. The aim of this research is to investigate the regulatory effect of OTUB1 on PCa proliferation and the underlying mechanism. Methods: Using the TCGA database, we identified that OTUB1 was up-regulated in PCa, and observed severe functional changes in PC3 and C4-2 cells through overexpression or knock down OTUB1. Heterotopic tumors were implanted subcutaneously in nude mice and IHC staining was performed on tumor tissues. The relationship between OTUB1 and cyclin E1 was identified via Western blotting and immunoprecipitations assays. Results: We found that the expression of OTUB1 in PCa was significantly higher than that in Benign Prostatic Hyperplasia (BPH). Overexpression OTUB1 obviously promoted the proliferation and migration of PC3 and C4-2 cells via mediating the deubiquitinated Cyclin E1, while OTUB1 knockout has the opposite effect. The nude mice experiment further explained the above conclusions. We finally determined that OTUB1 promotes the proliferation and progression of PCa via deubiquitinating and stabling Cyclin E1. Conclusions: Our findings reveal the critical role of OTUB1 in PCa, and OTUB1 promotes the proliferation and progression of PCa via deubiquitinating and stabilizing Cyclin E1. Blocking OTUB1/Cyclin E1 axis or applying RO-3306 could significantly repress the occurrence and development of PCa. OTUB1/Cyclin E1 axis might provide a new and potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ning Wu
- Key Laboratory of Breast Cancer Prevention and Therapy, State Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - Keke Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Miaomiao Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Youzhi Wang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jie Gao
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Boqiang Zhong
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Fuling Ma
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yudong Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Jiang
- Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Zhou Y, Huang Y, Dai T, Hua Z, Xu J, Lin Y, Han L, Yue X, Ho L, Lu J, Ai X. LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed Pharmacother 2021; 133:111030. [PMID: 33378944 DOI: 10.1016/j.biopha.2020.111030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Drug resistance has always been an important problem affecting the therapeutic effect of hepatocellular carcinoma (HCC). To investigate the potential role of lncRNA TTN-AS1 in HCC cells with sorafenib (SOR) resistance, and explore the underlying pathways, quantitative real time polymerase chain reaction (qRT-PCR) was used to test the expression of TTN-AS1 in HCC tissues and cells. Then, the expression of TTN-AS1 was down-regulated by shRNA, the activity changes, apoptosis and related protein expression in HCC cells with/without SOR treatment were observed in succession. Expression levels of the downstream target of TTN-AS1, miR-16-5p were studied by dual-luciferase binding assay, cell proliferation, and western blotting analysis. Nude mice models of human HCC with TTN-AS1 gene knockdown were established to observe the tumor growth. As the results revealed, TTN-AS1 silencing in HCC cells induced apoptosis by enhancing the sensitivity of cells to SOR, and the tumor in nude mice became smaller. The mechanism study showed that miR-16-5p was affected by TTN-AS1 sponge, up-regulated cyclin E1 expression, and regulated PTEN/Akt signaling pathway, thereby significantly alleviating the inhibition of apoptosis of HCC cells induced by TTN-AS1 gene. Collectively, our results provided TTN-AS1 as a potential therapeutic target for sorafenib resistance in HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Cyclin E/genetics
- Cyclin E/metabolism
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Sorafenib/pharmacology
- Tumor Burden/drug effects
- Up-Regulation
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yongping Zhou
- Wuxi Second Hospital, Nanjing Medical University, Department of Hepatobiliary Surgery, Wuxi, Jiangsu Province, 214002, PR China
| | - Yonggang Huang
- Kunshan Hospital of Traditional Chinese Medicine, Department of Hepatobiliary Surgery, Kunshan, Jiangsu Province, 215300, PR China
| | - Tu Dai
- Wuxi Second Hospital, Nanjing Medical University, Department of Hepatobiliary Surgery, Wuxi, Jiangsu Province, 214002, PR China
| | - Zhiyuan Hua
- Wuxi Second Hospital, Nanjing Medical University, Department of Hepatobiliary Surgery, Wuxi, Jiangsu Province, 214002, PR China
| | - Jian Xu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Yuting Lin
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Lulu Han
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Xiong Yue
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Lichen Ho
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Jinjing Lu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China
| | - Xiaoming Ai
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210019, PR China.
| |
Collapse
|
13
|
Sur S, Nakanishi H, Steele R, Zhang D, Varvares MA, Ray RB. Long non-coding RNA ELDR enhances oral cancer growth by promoting ILF3-cyclin E1 signaling. EMBO Rep 2020; 21:e51042. [PMID: 33043604 PMCID: PMC7726807 DOI: 10.15252/embr.202051042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer with a 5-year overall survival rate of 50%. Thus, there is a critical need to understand the disease process, and to identify improved therapeutic strategies. Previously, we found the long non-coding RNA (lncRNA) EGFR long non-coding downstream RNA (ELDR) induced in a mouse tongue cancer model; however, its functional role in human oral cancer remained unknown. Here, we show that ELDR is highly expressed in OSCC patient samples and in cell lines. Overexpression of ELDR in normal non-tumorigenic oral keratinocytes induces cell proliferation, colony formation, and PCNA expression. We also show that ELDR depletion reduces OSCC cell proliferation and PCNA expression. Proteomics data identifies the RNA binding protein ILF3 as an interacting partner of ELDR. We further show that the ELDR-ILF3 axis regulates Cyclin E1 expression and phosphorylation of the retinoblastoma (RB) protein. Intratumoral injection of ELDR-specific siRNA reduces OSCC and PDX tumor growth in mice. These findings provide molecular insight into the role of ELDR in oral cancer and demonstrate that targeting ELDR has promising therapeutic potential.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
| | | | - Robert Steele
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
| | - Dapeng Zhang
- Department of BiologySaint Louis UniversitySaint LouisMOUSA
| | - Mark A Varvares
- Saint Louis University Cancer CenterSaint LouisMOUSA
- Department of Otolaryngology, Head and Neck SurgeryMassachusetts Eye and EarHarvard Medical SchoolBostonMAUSA
| | - Ratna B Ray
- Department of PathologySaint Louis UniversitySaint LouisMOUSA
- Saint Louis University Cancer CenterSaint LouisMOUSA
| |
Collapse
|
14
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
15
|
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:146. [PMID: 32782275 PMCID: PMC7419547 DOI: 10.1038/s41392-020-00264-x] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The last 3 years have seen the emergence of promising targeted therapies for the treatment of hepatocellular carcinoma (HCC). Sorafenib has been the mainstay of treatment for a decade and newer modalities were ineffective and did not confer any increased therapeutic benefit until the introduction of lenvatinib which was approved based on its non-inferiority to sorafenib. The subsequent success of regorafenib in HCC patients who progress on sorafenib treatment heralded a new era of second-line treatment and was quickly followed by ramucirumab, cabozantinib, and the most influential, immune checkpoint inhibitors (ICIs). Over the same period combination therapies, including anti-angiogenesis agents with ICIs, dual ICIs and targeted agents in conjunction with surgery or other loco-regional therapies, have been extensively investigated and have shown promise and provided the basis for exciting clinical trials. Work continues to develop additional novel therapeutic agents which could potentially augment the presently available options and understand the underlying mechanisms responsible for drug resistance, with the goal of improving the survival of patients with HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Wang L, Yang Y, Wang XM, Wang CQ, Zhang YM, Li BL. MTHFD1L as a folate cycle enzyme correlates with prognostic outcome and its knockdown impairs cell invasive behaviors in osteosarcoma via mediating the AKT/mTOR pathway. J Recept Signal Transduct Res 2020; 40:584-590. [PMID: 32456526 DOI: 10.1080/10799893.2020.1769658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteosarcoma (OS) is the most frequent primary malignancy initially in bone with multiple genomic aberrations. Methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is linked with the progression of diverse tumors. However, its function in OS is not understood completely. The expression pattern and prognostic significance of MTHFD1L in OS tissues were analyzed based on GEO database. The expression level of MTHFD1L in OS cell lines was explored by qRT-PCR. The cell proliferation, colony formation ability, invasion as well as migration in OS cells after MTHFD1L knockdown were determined using cell counting kit 8 (CCK-8) assay, colony formation and transwell methods. GSEA analysis was performed to predict the underlying mechanisms of MTHFD1L in OS development. Furthermore, the western blot was utilized to study the influence of MTHFD1L on AKT/mTOR pathway. Our results indicated that MTHFD1L expression was significantly up-regulated in OS tissues and cells compared with normal tissues and cells. High expression of MTHFD1L could lead to poor prognosis of OS patients. Cell proliferation, colony formation ability, migration and invasion were blocked because of reduced MTHFD1L in vitro. Moreover, cell cycle and AKT/mTOR pathway were all associated with MTHFD1L expression. In conclusion, the findings revealed that MTHFD1L might promote the development of OS via mediating cell cycle and AKT/mTOR pathway, indicating that MTHFD1L might act as a promising therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Ya Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Xiu-Mei Wang
- Electroencephalogram Room, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Cheng-Qun Wang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Yuan-Min Zhang
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, PR China
| | - Bing-Liang Li
- Department of Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, PR China
| |
Collapse
|
17
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Cucarull B, Tutusaus A, Subías M, Stefanovic M, Hernáez-Alsina T, Boix L, Reig M, García de Frutos P, Marí M, Colell A, Bruix J, Morales A. Regorafenib Alteration of the BCL-xL/MCL-1 Ratio Provides a Therapeutic Opportunity for BH3-Mimetics in Hepatocellular Carcinoma Models. Cancers (Basel) 2020; 12:E332. [PMID: 32024199 PMCID: PMC7073154 DOI: 10.3390/cancers12020332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The multikinase inhibitor regorafenib, approved as second-line treatment for hepatocellular carcinoma (HCC) after sorafenib failure, may induce mitochondrial damage. BH3-mimetics, inhibitors of specific BCL-2 proteins, are valuable drugs in cancer therapy to amplify mitochondrial-dependent cell death. METHODS In in vitro and in vivo HCC models, we tested regorafenib's effect on the BCL-2 network and the efficacy of BH3-mimetics on HCC treatment. RESULTS In hepatoma cell lines and Hep3B liver spheroids, regorafenib cytotoxicity was potentiated by BCL-xL siRNA transfection or pharmacological inhibition (A-1331852), while BCL-2 antagonism had no effect. Mitochondrial outer membrane permeabilization, cytochrome c release, and caspase-3 activation mediated A-1331852/regorafenib-induced cell death. In a patient-derived xenograft (PDX) HCC model, BCL-xL inhibition stimulated regorafenib activity, drastically decreasing tumor growth. Moreover, regorafenib-resistant HepG2 cells displayed increased BCL-xL and reduced MCL-1 expression, while A-1331852 reinstated regorafenib efficacy in vitro and in a xenograft mouse model. Interestingly, BCL-xL levels, associated with poor prognosis in liver and colorectal cancer, and the BCL-xL/MCL-1 ratio were detected as being increased in HCC patients. CONCLUSION Regorafenib primes tumor cells to BH3-mimetic-induced cell death, allowing BCL-xL inhibition with A-1331852 or other strategies based on BCL-xL degradation to enhance regorafenib efficacy, offering a novel approach for HCC treatment, particularly for tumors with an elevated BCL-xL/MCL-1 ratio.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Miguel Subías
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Milica Stefanovic
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO)-IDIBELL, L’Hospitalet, 08908 Barcelona, Spain
| | | | - Loreto Boix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - María Reig
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (M.S.); (M.S.); (P.G.d.F.); (M.M.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain; (L.B.); (M.R.); (J.B.)
| |
Collapse
|