1
|
Suwittayarak R, Nowwarote N, Kornsuthisopon C, Sukarawan W, Foster BL, Egusa H, Osathanon T. Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth. Sci Rep 2024; 14:24282. [PMID: 39414921 PMCID: PMC11484878 DOI: 10.1038/s41598-024-75303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Calcium phosphate-based materials (CaP) are introduced as potential dental pulp capping materials for deciduous teeth. The present study investigated the influence of inorganic phosphate (Pi) on regulating stem cells isolated from human exfoliated deciduous teeth (SHED). SHEDs were treated with Pi. Cell cycle progression and apoptosis were examined using flow cytometry analysis. Osteo/odontogenic and adipogenic differentiation were analyzed using alizarin red S and oil red O staining, respectively. The mRNA expression profile was investigated using a high-throughput RNA sequencing technique. Pi increased the late apoptotic cell population while cell cycle progression was not altered. Pi upregulated osteo/odontoblastic gene expression and enhanced calcium deposition. Pi-induced mineralization was reversed by pretreatment of cells with Foscarnet, or p38 inhibitor. Pi treatment inhibited adipogenic differentiation as determined by decreased PPARγ expression and reduced intracellular lipid accumulation. Bioinformatic analysis of gene expression profiles demonstrated several involved pathways, including PI3K/AKT, MAPK, EGFR, and VEGF signaling. In conclusion, Pi enhanced osteo/odontogenic but inhibited adipogenic differentiation in SHED.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waleerat Sukarawan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Paediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Miyagi, Japan.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Scherr AL, Nader L, Xu K, Elssner C, Ridder DA, Nichetti F, Mastel M, Fritzsche S, Kelmendi E, Schmitt N, Hoffmeister-Wittmann P, Weiler SME, Korell F, Albrecht T, Schwab M, Isele H, Kessler A, Hüllein J, Seretny A, Ye L, Urbanik T, Welte S, Leblond AL, Heilig CE, Rahbari M, Ali A, Gallage S, Lenoir B, Wilhelm N, Gärtner U, Ogrodnik SJ, Springfeld C, Tschaharganeh D, Fröhling S, Longerich T, Schulze-Bergkamen H, Jäger D, Brandl L, Schirmacher P, Straub BK, Weber A, De Toni EN, Goeppert B, Heikenwalder M, Jackstadt R, Roessler S, Breuhahn K, Köhler BC. Etiology-independent activation of the LTβ-LTβR-RELB axis drives aggressiveness and predicts poor prognosis in HCC. Hepatology 2024; 80:278-294. [PMID: 37916976 DOI: 10.1097/hep.0000000000000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND AIMS HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTβR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.
Collapse
Affiliation(s)
- Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Christin Elssner
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk A Ridder
- Department of General Pathology, University Hospital Mainz, Mainz, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnieszka Seretny
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Liangtao Ye
- Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Welte
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nina Wilhelm
- Clinical Cooperation Unit "Applied Tumor Immunity", German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Simon J Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Darjus Tschaharganeh
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Lydia Brandl
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Beate K Straub
- Department of General Pathology, University Hospital Mainz, Mainz, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Enrico N De Toni
- Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, University Clinic Tübingen (UKT), Medical faculty, Tübingen, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J, Xu Y. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol 2023; 68:102952. [PMID: 37944384 PMCID: PMC10641764 DOI: 10.1016/j.redox.2023.102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Tamoxifen (TAM) resistance remains a major obstacle in the treatment of advanced breast cancer (BCa). In addition to the competitive inhibition of the estrogen receptor (ER) signaling pathway, damping of mitochondrial function by increasing reactive oxygen species (ROS) is critical for enhancing TAM pharmacodynamics. Here, we showed that RelB contributes to TAM resistance by inhibiting TAM-provoked ferroptosis. TAM-induced ROS level promoted ferroptosis in TAM-sensitive cells, but the effect was alleviated in TAM-resistant cells with high constitutive levels of RelB. Mechanistically, RelB inhibited ferroptosis by transcriptional upregulating glutathione peroxidase 4 (GPX4). Consequently, elevating RelB and GPX4 in sensitive cells increased TAM resistance, and conversely, depriving RelB and GPX4 in resistant cells decreased TAM resistance. Furthermore, suppression of RelB transcriptional activation resensitized TAM-resistant cells by enhancing ferroptosis in vitro and in vivo. The inactivation of GPX4 in TAM-resistant cells consistently resensitized TAM by increasing ferroptosis-mediated cell death. Together, this study uncovered that inhibition of ferroptosis contributes to TAM resistance of BCa via RelB-upregulated GPX4.
Collapse
Affiliation(s)
- Zhi Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Phase 1 Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiumei Wang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Wenbo Sun
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Fan Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Hengyuan Kou
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Weizi Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Yanyan Zhang
- Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Qin Jiang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yong Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China.
| |
Collapse
|
4
|
Kim SL, Choi HS, Lee DS. BRD4/nuclear PD-L1/RelB circuit is involved in the stemness of breast cancer cells. Cell Commun Signal 2023; 21:315. [PMID: 37924094 PMCID: PMC10623882 DOI: 10.1186/s12964-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer diagnosed in women worldwide. BC stem cells (BCSCs) have been known to be involved in the carcinogenesis of the breast and contribute to therapeutic resistance. The programmed death-ligand 1 (PD-L1) expression of BC correlated with a poor prognosis. Immunotherapies that target PD-L1 have great potential and have been successful when applied to cancer treatment. However, whether PD-L1 regulates BCSC formation is unknown. METHODS BCSCs were enriched by serum-free suspension culture. The properties of BCSCs were examined by mammosphere formation assay, CD44+/Cd24-, aldehyde dehydrogenase (ALDH) assay, CSC marker analysis, and mammosphere growth assay. To elucidate the functions of bromodomain-containing protein 4 (BRD4), nuclear PD-L1, and RelB proteins in the stemness of BCSCs, mammosphere formation was examined using BRD4 inhibitor and degrader, PD-L1 degrader, and RelB inhibitor. The antitumor function of 3',4',7,8-tetrahydroxyflavone (THF), a specific BRD4 inhibitor, was studied through in vivo tumor model and mouse studies, and the protein levels of c-Myc, PD-L1, and RelB were examined in tumor model under THF treatment. RESULTS BRD4 was upregulated in breast CSCs and regulates the stemness of BCs. The downregulation of BRD4 using BRD4 PROTAC, ARV-825, and BRD4 inhibitor, (+)-JQ1, inhibits mammosphere formation and reduces the levels of breast CSC markers (CD44+/CD24- and ALDH1), stem cell marker genes, and mammosphere growth. BRD4 inhibitor (JQ1) and degrader (ARV825) downregulate membrane and nuclear fractions of PD-L1 through the inhibition of PD-L1 transcript levels. The knockdown of PD-L1 inhibits mammosphere formation. Verteporfin, a PD-L1 degrader, inhibits the transcripts and protein levels of PD-L1 and downregulates the transcript and protein levels of RelB. Calcitriol, a RelB inhibitor, and the knockdown of RelB using si-RelB regulate mammosphere formation through interleukin-6 (IL-6) expression. THF is a natural product and a potent selective BRD4 inhibitor, inhibits mammosphere formation, and reduces the levels of CD44+/CD24- and mammosphere growth by downregulating c-Myc, PD-L1, and RelB. 3',4',7,8-THF shows tumoricidal activity and increased levels of CD3+CD4+ and CD3+CD8+ T-cells in the tumor and tumor-draining lymph nodes (TDLNs) in the murine tumor model using 4T1 and MC38 cells. CONCLUSIONS The results show the first evidence of the essential role of the BRD4/nuclear PD-L1/RelB axis in breast CSC formation. The nuclear PD-L1 regulates RelB, and the RelB/p65 complex induces IL6 and breast CSC formation. Targeting nuclear PD-L1 represents a potential and novel tool for immunotherapies of intractable BC. Video Abstract.
Collapse
Affiliation(s)
- Su-Lim Kim
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea
- Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hack Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju, 63243, Republic of Korea.
| | - Dong-Sun Lee
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea.
- Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, 63243, Republic of Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Wu D, Tian S, Zhu W. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: mechanisms and perspectives. Expert Opin Ther Targets 2023; 27:503-515. [PMID: 37314372 DOI: 10.1080/14728222.2023.2225767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Despite the advances made in cancer treatment in the past decades, therapeutic efficacy is still quite challenging, partially due to the emergence of multidrug resistance (MDR). It is crucial to decipher the underlying mechanisms of resistance in order to develop new therapeutic strategies for cancer patients. Previous studies have shown that activation of nuclear factor-κB (NF-κB) plays key roles in various cellular processes including proliferation, anti-apoptosis, metastasis, invasion, and chemoresistance. AREAS COVERED In this review, we conduct an integrated analysis of the evidence suggesting the vital roles of the NF-κB signaling pathway in MDR during chemotherapy, immunotherapy, endocrine, and targeted therapy. A literature search was performed on NF-κB and drug resistance in PubMed up to February 2023. EXPERT OPINION This review summarizes that the NF-κB signaling pathway exhibits a crucial role in enhancing drug resistance in chemotherapy, immunotherapy, endocrine, and targeted therapy. The application of combination therapy with existing antineoplastic drugs and a safe NF-κB inhibitor could become a promising strategy in cancer treatment. A better understanding of the pathway and mechanisms of drug resistance may help exploit safer and more effective NF-κB-targeting agents for clinical use in the future.
Collapse
Affiliation(s)
- Dapeng Wu
- Department of Oncology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Sai Tian
- Department of Pediatric Clinic, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- Department of Respiratory and Critical Care Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
6
|
Masood M, Masood MBE, Us Subah N, Shabbir M, Paracha RZ, Rafiq M. Investigating isoform switching in RHBDF2 and its role in neoplastic growth in breast cancer. PeerJ 2022; 10:e14124. [PMID: 36452073 PMCID: PMC9703992 DOI: 10.7717/peerj.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer-related deaths globally, and its prevalence rates are increasing daily. In the past, studies predicting therapeutic drug targets for cancer therapy focused on the assumption that one gene is responsible for producing one protein. Therefore, there is always an immense need to find promising and novel anti-cancer drug targets. Furthermore, proteases have an integral role in cell proliferation and growth because the proteolysis mechanism is an irreversible process that aids in regulating cellular growth during tumorigenesis. Therefore, an inactive rhomboid protease known as iRhom2 encoded by the gene RHBDF2 can be considered an important target for cancer treatment. Speculatively, previous studies on gene expression analysis of RHBDF2 showed heterogenous behaviour during tumorigenesis. Consistent with this, several studies have reported the antagonistic role of iRhom2 in tumorigenesis, i.e., either they are involved in negative regulation of EGFR ligands via the ERAD pathway or positively regulate EGFR ligands via the EGFR signalling pathway. Additionally, different opinions suggest iRhom2 mediated cleavage of EGFR ligands takes place TACE dependently or TACE independently. However, reconciling these seemingly opposing roles is still unclear and might be attributed to more than one transcript isoform of iRhom2. Methods To observe the differences at isoform resolution, the current strategy identified isoform switching in RHBDF2 via differential transcript usage using RNA-seq data during breast cancer initiation and progression. Furthermore, interacting partners were found via correlation and enriched to explain their antagonistic role. Results Isoform switching was observed at DCIS, grade 2 and grade 3, from canonical to the cub isoform. Neither EGFR nor ERAD was found enriched. However, pathways leading to TACE-dependent EGFR signalling pathways were more observant, specifically MAPK signalling pathways, GPCR signalling pathways, and toll-like receptor pathways. Nevertheless, it was noteworthy that during CTCs, the cub isoform switches back to the canonical isoform, and the proteasomal degradation pathway and cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could be inferred that cub isoform functions during cancer initiation in EGFR signalling. In contrast, during metastasis, where invasion is the primary task, the isoform switches back to the canonical isoform.
Collapse
Affiliation(s)
- Mehar Masood
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan,Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Madahiah Bint E Masood
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Noor Us Subah
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Reimche I, Yu H, Ariantari NP, Liu Z, Merkens K, Rotfuß S, Peter K, Jungwirth U, Bauer N, Kiefer F, Neudörfl JM, Schmalz HG, Proksch P, Teusch N. Phenanthroindolizidine Alkaloids Isolated from Tylophora ovata as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms231810319. [PMID: 36142230 PMCID: PMC9499467 DOI: 10.3390/ijms231810319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.
Collapse
Affiliation(s)
- Irene Reimche
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ni Putu Ariantari
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kay Merkens
- Department of Chemistry, University of Cologne, 50923 Cologne, Germany
| | - Stella Rotfuß
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Karin Peter
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Ute Jungwirth
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Nadine Bauer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
| | - Friedemann Kiefer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | | | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163
| |
Collapse
|
8
|
Zhang Y, Zhu S, Du Y, Xu F, Sun W, Xu Z, Wang X, Qian P, Zhang Q, Feng J, Xu Y. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res 2022; 41:66. [PMID: 35177112 PMCID: PMC8851785 DOI: 10.1186/s13046-022-02243-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background
The interaction between programmed death receptor (PD-1) and its ligand (PD-L1) is essential for suppressing activated T-lymphocytes. However, the precise mechanisms underlying PD-L1 overexpression in tumours have yet to be fully elucidated. Here, we describe that RelB participates in the immune evasion of prostate cancer (PCa) via cis/trans transcriptional upregulation of PD-L1.
Methods
Based on transcriptome results, RelB was manipulated in multiple human and murine PCa cell lines. Activated CD4+ and CD8+ T cells were cocultured with PCa cells with different levels of RelB to examine the effect of tumourous RelB on T cell immunity. Male mice were injected with murine PCa cells to validate the effect of RelB on the PD-1/PD-L1-mediated immune checkpoint using both tumour growth and metastatic experimental models.
Results
PD-L1 is uniquely expressed at a high level in PCa with high constitutive RelB and correlates with the patients’ Gleason scores. Indeed, a high level of PD-L1 is associated with RelB nuclear translocation in AR-negative aggressive PCa cells. Conversely, the silencing of RelB in advanced PCa cells resulted in reduced PD-L1 expression and enhanced susceptibility of PCa cells to the T cell immune response in vitro and in vivo. Mechanistically, a proximal NF-κB enhancer element was identified in the core promoter region of the human CD274 gene, which is responsible for RelB-mediated PD-L1 transcriptional activation. This finding provides an informative insight into immune checkpoint blockade by administering RelB within the tumour microenvironment.
Conclusion
This study deciphers the molecular mechanism by which tumourous RelB contributes to immune evasion by inhibiting T cell immunity via the amplification of the PD-L1/PD-1-mediated immune checkpoint. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02243-2.
Collapse
Affiliation(s)
- Yanyan Zhang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Shuyi Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Du
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Fan Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhi Xu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiumei Wang
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Peipei Qian
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qin Zhang
- Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Jifeng Feng
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Yong Xu
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Zhang M, Meng M, Liu Y, Qi J, Zhao Z, Qiao Y, Hu Y, Lu W, Zhou Z, Xu P, Zhou Q. Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Res 2021; 23:116. [PMID: 34922602 PMCID: PMC8684143 DOI: 10.1186/s13058-021-01488-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. Methods We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. Results Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). Conclusions Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01488-7.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yanxing Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Lu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Provance OK, Geanes ES, Lui AJ, Roy A, Holloran SM, Gunewardena S, Hagan CR, Weir S, Lewis-Wambi J. Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer Lett 2021; 514:12-29. [PMID: 34022283 PMCID: PMC8221017 DOI: 10.1016/j.canlet.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Overexpression of interferon induced transmembrane protein-1 (IFITM1) enhances tumor progression in multiple cancers, but its role in triple-negative breast cancer (TNBC) is unknown. Here, we explore the functional significance and regulation of IFITM1 in TNBC and strategies to target its expression. Immunohistochemistry staining of a tissue microarray demonstrates that IFITM1 is overexpressed in TNBC samples which is confirmed by TCGA analysis. Targeting IFITM1 by siRNA or CRISPR/Cas9 in TNBC cell lines significantly inhibits proliferation, colony formation, and wound healing in vitro. Orthotopic mammary fat pad and mammary intraductal studies reveal that loss of IFITM1 reduces TNBC tumor growth and invasion in vivo. RNA-seq analysis of IFITM1/KO cells reveals significant downregulation of several genes involved in proliferation, migration, and invasion and functional studies identified NF-κB as an important downstream target of IFITM1. Notably, siRNA knockdown of p65 reduces IFITM1 expression and a drug-repurposing screen of FDA approved compounds identified parthenolide, an NFκB inhibitor, as a cytotoxic agent for TNBC and an inhibitor of IFITM1 in vitro and in vivo. Overall, our findings suggest that targeting IFITM1 by suppressing interferon-alpha/NFκB signaling represents a novel therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Olivia K Provance
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eric S Geanes
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Asona J Lui
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anuradha Roy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, 66049, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Christy R Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA; The Institute for Advancing Medical Innovation, Kansas City, KS, 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; The University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|